Amino AcidsFatigue and Immunodepression in Exercise
by taratuta
Comments
Transcript
Amino AcidsFatigue and Immunodepression in Exercise
Chapter 11 Amino Acids, Fatigue and Immunodepression in Exercise ERIC A. NEWSHOLME AND LINDA M. CASTELL Introduction Amino acids and the athlete This chapter discusses the importance of some amino acids in relation to exercise, in particular to prolonged, exhaustive exercise. Protein metabolism and the protein requirements of the athlete have already been discussed in Chapter 10. Nevertheless, it is worth mentioning here that consideration of daily protein requirements is complicated by the fact that not all proteins in the diet have the same nutritional value, since they contain different amounts of essential amino acids. First-class proteins (e.g. in eggs, milk and meat) contain enough of each essential amino acid to allow protein synthesis to occur without the need to eat extra protein (Fig. 11.1). By contrast, proteins of plant origin are termed ‘second class’ because they are deficient in the same amino acids. Adequate amounts of each of the essential amino acids can be obtained from a vegetarian diet by eating a wide range of plant foods, e.g. cereals and legumes. This does mean, however, that the extra protein consumed takes the place in the diet of the all-important carbohydrate. The athlete must therefore seek a balance: too much protein and the diet is distorted; too little and recovery after intensive training might be slowed. This problem leads to a consideration of supplementation of the diet with essential amino acids, especially during peak training. Furthermore, from studies on individual cells in vitro, knowledge is becoming available of the individual nutritional requirements of particular cells and how these change under different conditions. Transfer of this knowledge to clinical situations has occurred over the past 10 years with considerable success. Consequently, it is now possible to provide nutrients designed to deliver fuels to particular cells, tissues and organs that are involved in the response to injury or illness, and this will enhance the natural healing process. This information can be extended to include the athlete. Furthermore, a specific response to exercise, and to physical and mental fatigue, can provide information that could be applied in the clinic. In addition, it is possible to suggest some amino acids with which athletes might consider supplementing their diet (Table 11.1). Some of the acquired non-dispensable amino acids that might be of benefit to athletes if taken as a supplement have been discussed elsewhere (Newsholme et al. 1994). In this chapter discussion will centre on glutamine and the branched chain amino acids, for which evidence of benefit in the athletic field is available. Fatigue in physical activity Fatigue in physical activity can be considered at physiological or biochemical levels. Potential mechanisms for fatigue at a physiological level are as follows (see Fitts 1994). 1 Central fatigue: (a) excitatory input to higher motor centres; 153 154 nutrition and exercise Non-essential Alanine Glutamine and asparagine Arginine Creatine Nitric oxide Cysteine Aspartate Pyrimidines Proline Cysteine Taurine Glycine Glutamate γ-Aminobutyrate Tryrosine Glutamine Amino sugars Purines Pyrimidines Glycine Creatine Purines Tetrapyrroles Hisitidine Histamine Lysine Carnitine Methionine Creatine Methyl derivatives Serine Choline Ethanolamine Sphingosine Proline Ornithine Putrescine Tryrosine Catecholamines Melanin Thyroxine Tryptophan 5-Hydroxytryptamine Nicotinic acid Valine Pantothenic acid Serine Arginine Aspartic acid Glutamic acid Valine Tryptophan Histidine Methionine Phenylalanine Essential Threonine Isoleucine Leucine Lysine +Peptides (e.g. carnosine, glutathione) Fig. 11.1 The amino acid composition of myosin, one of the two major proteins in muscle — and, therefore, in lean meat — and the biosynthetic role of some of these amino acids. From Newsholme et al. (1994), with permission. (b) excitatory drive to lower motor neurones; (c) motor neurone excitability. In these three mechanisms there is a decrease in neural drive. This can be detected by showing that fatiguing muscle can still maintain power output if the nerve is stimulated artificially or the brain is stimulated. 2 Peripheral fatigue: (a) neuromuscular transmission; (b) sarcolemma excitability; (c) excitation–contraction coupling. Biochemical mechanisms for fatigue can also be put forward: • depletion of phosphocreatine in muscle; • accumulation of protons in muscle; • accumulation of phosphate in muscle; • depletion of glycogen in muscle; • hypoglycaemia; • changes in the concentrations of key amino acids in the blood leading to changes in the concentrations of neurotransmitters in the brain. Some of these mechanisms have been discussed elsewhere (Newsholme et al. 1994). The first four are explanations for peripheral fatigue and the last two are explanations of central fatigue. The advantage of proposing a biochemical mechanism is that, from this knowledge, ideas can be put forward for manipulations to delay fatigue. A hypothesis is suggested that links all of the latter three biochemical mecha- amino acids, fatigue and immunodepression 155 Table 11.1 A ‘contemporary’ view of dispensable and non-dispensable amino acids. Category Amino acid Totally non-dispensable Lysine, threonine Oxoacid non-dispensable* Branched-chain amino acids†, methionine, phenylalanine, tryptophan Conditionally non-dispensable‡ Cysteine, tyrosine Acquired non-dispensable§ Arginine, cysteine, glutamine, glycine, histidine, serine Dispensable¶ Alanine, asparagine, aspartate, glutamate * The carbon skeleton of these amino acids cannot be synthesized by the body. However, if the oxo(keto) acids are provided, the amino acids can be synthesized from the oxoacids via the process of transamination. The oxoacids can be provided artificially. † The branched-chain amino acids may play a role in fatigue but, to place them in context, it is important to outline various explanations for fatigue (see text). ‡ These are produced from other amino acids — cysteine from methionine and tyrosine from phenylalanine — provided that these amino acids are present in excess. § The demand for these amino acids can increase markedly under some conditions, e.g. infection, severe trauma, burns and in some premature babies. ¶ It is assumed that all these amino acids can be synthesized at sufficient rates in the body to satisfy all requirements. It is now beginning to be appreciated that this may not always be the case for glutamine. nisms into one mechanism involving the central serotoninergic pathway in central fatigue. There is considerable evidence that depletion of muscle glycogen results in fatigue. In middledistance events, aerobic and anaerobic metabolism both contribute to adenosine triphosphate (ATP) generation. The athlete can use the aerobic system towards its maximum capacity, i.e. that which is limited by oxygen supply to the muscle but, in addition, further ATP can be produced from the conversion of glycogen to lactate. So what causes fatigue in this situation? It is suggested that it is either depletion of glycogen or the accumulation of protons in the muscle; whichever occurs will depend upon the distance of the event, the class of the athlete and his/her fitness. If the rate of conversion of glycogen to lactate is greater than the capacity to lose protons from the muscle, protons will eventually accumulate sufficiently to cause fatigue (Newsholme et al. 1994). However, it is also possible that depletion of glycogen before the end of the event can result in fatigue. As glycogen levels fall, fatty acid mobilization will occur and increase the plasma fatty acid level. In a prolonged event such as the marathon, fatty acids must be mobilized since there is not enough glycogen to provide the energy required for the whole event. For an optimum performance, the marathon runner must oxidize both glycogen and fat simultaneously, but the rate of utilization of the latter should be such as to allow glycogen to be used for the whole of the distance — and for depletion to occur at the finishing post. Consequently, precision in control of the rates of utilization of the two fuels, fat and glycogen, is extremely important. An interesting question is why glycogen depletion should result in fatigue. If, as is already known, it were possible to switch to the enormous store of fat as a fuel, this would delay fatigue dramatically: theoretically, the runner should then be able to maintain a good pace for a considerable period of time — possibly several days. At least two explanations have been put forward to account for the fact that this does not 156 nutrition and exercise occur. First, there is a limitation in the rate of fatty acid oxidation so that a high rate of ATP generation cannot be supported by fatty acid oxidation alone so that, once fat becomes the dominant fuel, the pace must slow. Secondly, and these are not mutually exclusive, fatty acids must be mobilized from adipose tissue to be oxidized and mobilization of fatty acids can result in central fatigue. A mechanism for this is described below. Plasma levels of tryptophan, branched-chain amino acids and the 5-HT hypothesis for central fatigue The branched-chain amino acids (leucine, isoleucine and valine), unlike other amino acids, are taken up largely by muscle and adipose tissue. Like most amino acids, tryptophan is taken up and metabolized by the liver. However, a small amount of tryptophan is taken up by the brain, where it is converted to the neurotransmitter 5-hydroxytryptamine (5-HT). Once this neurotransmitter is released in the synapses of some neurones, it can influence a variety of behaviours, including tiredness, sleep, mood and possibly mental fatigue. It is suggested that an increase in 5-HT level in these neurones makes it harder mentally to maintain the same pace of running, cycling, etc. The basic tenets of the hypothesis are as follows. 1 Both branched-chain amino acids and tryptophan (and other aromatic amino acids) enter the brain upon the same amino acid carrier so that there is competition between the two groups of amino acids for entry (for review, see Fernstrom 1990). 2 Tryptophan is converted via two enzymes in the brain to 5-HT. However, an increased level of brain tryptophan can increase the rate of formation and hence the level of 5-HT in some areas of the brain (Blomstrand et al. 1989). 3 A high 5-HT level could result in increased amount of this neurotransmitter being released into the synaptic cleft during neuronal firing, therefore leading to a greater postsynaptic stimulation in some 5-HT neurones. 4 It is proposed that some of these neurones are involved in fatigue. 5 Tryptophan is unique amongst the amino acids in that it is bound to albumin, so that it exists in the plasma and interstitial space in bound and free forms, which are in equilibrium. This equilibrium changes in favour of free tryptophan as the plasma fatty acid level increases, since the latter also binds to albumin and this decreases the affinity for tryptophan. 6 It is considered that the plasma concentration of free tryptophan governs, in competition with branched chain amino acids, the rate of entry of tryptophan into the brain, the level of tryptophan in the brain and hence that of 5-HT (Fernstrom 1990). As a consequence of these basic tenets, it is proposed that either an increase in the plasma fatty acid level and/or a decrease in that of branched-chain amino acids would increase the plasma concentration ratio of free tryptophan to branched chain amino acids. This would then favour the entry of tryptophan into the brain, and increase the level of 5-HT which would lead to a decrease in motor drive and a fall in power output. Hence a marked increase in the plasma fatty acid level could lead, via changes in the plasma level of free tryptophan, to fatigue. This could occur in both the middle-distance or marathon runner as the muscle and liver glycogen stores are depleted and the fatty acid is mobilized from adipose tissue. Importance of precision in the mobilization and oxidation of fatty acids The precise balance between the use of the two fuels, glycogen and fatty acids, may be extremely important for the athlete, since too high or too low a rate of fatty acid mobilization/oxidation could cause problems (Newsholme et al. 1994). After 20–30 min of exercise, mobilization of fatty acids from adipose tissue increases, probably as a result of sympathetic stimulation. However, despite increased rates of mobilization, the plasma concentration amino acids, fatigue and immunodepression of fatty acids may be only slightly increased: this is because the rates of fatty acid uptake and oxidation by the active muscle are increased (Winder 1996). It is possible that the plasma fatty acid concentration and therefore the free tryptophan level increases markedly in exercise only in some conditions: • when the muscle (and liver) glycogen store are totally depleted; • in unfit subjects, when control of fatty acid mobilization may not be precisely regulated in relation to demand and control of oxidation within the muscle; • when the rate of fatty acid oxidation by muscle is somewhat restricted by the intermittent nature of the exercise that occurs, in games such as soccer, rugby, tennis, or squash; • in obese individuals, in whom precision of release may be restricted by the amount of adipose tissue. If the rate of fatty acid mobilization from adipose tissue is higher than that of oxidation by muscle, the plasma concentration of fatty acids will increase, increasing the free tryptophan level in the plasma, which will result in central fatigue as described above. If the rate of fatty acid oxidation is too low (e.g. if the rate of mobilization is too low), the rate of glycogen oxidation will be high, and the athlete may deplete glycogen stores before the end of the race, resulting in a very poor performance. Thus, the endurance athlete appears to have to run on a metabolic tightrope of fatty acid mobilization/oxidation during the race, and the precise rate of mobilization/oxidation for each athlete must be learnt by training. A summary of experimental findings which support the hypothesis is as follows. 1 The plasma concentration ratio of free tryptophan/branched-chain amino acids is increased in humans after prolonged exhaustive exercise and, in the rat, the brain levels of tryptophan and 5-HT are increased (Blomstrand et al. 1989, 1991a). 2 Administration of a 5-HT agonist impairs running performance, whereas a 5-HT antago- 157 nist improved running performance in rats (Bailey et al. 1992). 3 Administration of a 5-HT re-uptake blocker to human subjects decreased physical performance — exercise time to exhaustion during standardized exercise was decreased in comparison with a control condition (Wilson & Maughan 1992). 4 The secretion of prolactin from the hypothalamus is controlled, in part, by 5-HT neurones, and 5-HT stimulates the rate of secretion. During exercise, there is a correlation between the plasma levels of prolactin and free tryptophan, supporting the view that increased free tryptophan level in the blood can influence the 5-HT level in the hypothalamus (Fischer et al. 1991). 5 The blood prolactin level increased to a much smaller extent in well-trained endurance athletes, compared with controls, in response to an agent that increased 5-HT levels in the hypothalamus (e.g. fenfluramine). This could be caused by down-regulation of 5-HT receptors as a result of chronic elevation of the 5-HT level in this part of the brain (Jakeman et al. 1994). In the past few years, supplementary feeding with branched-chain amino acids has produced some results supporting the hypothesis and some which show no effect. The latter are described in more detail by Davis in Chapter 12. Table 11.2 gives a brief comparison of the results from supplementation studies in exercise of which the authors are aware. In one of the most recent studies, a laboratory-based, cross-over study, seven endurance cyclists were monitored for perceived effort and mental fatigue (using the Borg scale), with and without branched-chain amino acid supplementation. When subjects received the branched-chain amino acids, compared with the placebo, there was a lower perception of effort required to sustain the level of exercise required (Blomstrand et al. 1997). Mittleman et al. (1998) have reported a positive effect of branched-chain amino acids on performance in moderate exercise during heat stress in men and women. In rats, injection of branched-chain amino acids not only increased the time to fatigue of 158 No. of subjects 13 10 193c 25c 5 10 7 6 52 10 7 9 10 Exercise Cycling Cycling Cycling Marathond 30-km rund Cycling Cycling Cycling Soccerd 30-km rund Cycling Cycling Cyclingi Cycling · Vo2max. (%) 40 70–75 70–75 N/M 75 72.7 65–75 N/M N/M 70 70 63.1 N/M Duration (min) c. 137–153 c. 122 c. >210 60–80 50–60 c. 30 145 c. 230 60 c. 159 c. 125–212 Amount of BCAA ingested 12.8 g 23.4 g 7.8 g 16 g 6.3 g·l-1 16 g·day-1g 30 g 10 gf 5.3 gh 0.74 g·l-1f 6–9 g 18 gj 21 g p[BCAA] Effect on NH3 Effect on performance Mental Physical Reference 1250 mm 2400 mm 950 mm 1250 mm None Rise Rise N/M None N/M N/M Improved Improveda Noneb Noneb Improvede Mittleman et al. (1998) van Hall et al. (1995) van Hall et al. (1995) Blomstrand et al. (1991a) 1000 mm N/M 3000 mm 1200 mm 650 mm 420 mm 1050 mm 1026 mm c.1250 mm N/M N/M Rise N/M N/M N/M None Rise Rise N/M N/M N/M Improved Improved N/M Improved N/M Improved None Improved None N/M N/M None Improved None None Blomstrand et al. (1995) Hefler et al. (1995) Wagenmakers (1992) Blomstrand et al. (1991b) Hassmen et al. (1994) Galiano et al. (1991) Blomstrand et al. (1997) Madsen et al. (1996) Struder et al. (1998) N/M, not measured; p[BCAA], the peak plasma concentration of branched-chain amino acids observed in each study. a Subjects experienced heat stress. b Very high day-to-day intraindividual variation in time to fatigue for some subjects. c Not all subjects gave blood samples. d Field study. e In subset of slower runners. f 6% carbohydrate added. g 14-day study. h 7% carbohydrate added. i 100-km trials. j 5% carbohydrate added. nutrition and exercise Table 11.2 A comparison of studies on branched-chain amino acid (BCAA) supplementation in humans during endurance exercise. amino acids, fatigue and immunodepression exercising rats but also prevented the normal increase in brain tryptophan level caused by exhaustive exercise (T. Yamamoto, personal communication). Calders et al. (1997) observed an increase in the time to fatigue, as well as an increase in plasma ammonia, in fasting rats injected with 30 mg of branched-chain amino acids 5 min before exercise, compared to those injected with placebo. The data in Table 11.2 indicate that administration of branched-chain amino acids alone appears to have a more beneficial effect than when added to carbohydrate. It also seems that the higher the dose of branched-chain amino acids, the more likely it is that plasma ammonia levels will be elevated. This suggests that lower doses are more likely to be beneficial. In the majority of studies, the branched-chain amino acids have been administered before exercise. It may be that administration during exercise was the reason that Blomstrand et al. (1997) and Mittleman et al. (1998) failed to observe a change in plasma ammonia. Whether a bolus dose is given or whether separate doses are given during exercise could be important for the release of ammonia from muscle. In conclusion, beneficial effects of branchedchain amino acids have been seen on aspects of both mental and physical fatigue in exhaustive exercise. Most studies have not investigated effects on mental fatigue. However, the mental exertion necessary to maintain a given power output is an integral feature of central fatigue. Cellular nutrition in the immune system For many years, it was thought that both lymphocytes and macrophages obtained most of their energy from the oxidation of glucose. However, it has now been shown that these cells also use glutamine and that its rate of utilization is either similar to or greater than that of glucose. There are clear lines of evidence which support the view that glutamine is used at a very high rate by lymphocytes and by macrophages in vivo. 1 The maximal catalytic activity of glutaminase, 159 the key enzyme in the glutamine utilization pathway, is high in freshly isolated resting lymphocytes and macrophages (Ardawi & Newsholme 1983, 1985). 2 The rates of utilization of glutamine are high: (i) in freshly isolated lymphocytes and macrophages (Ardawi & Newsholme 1983, 1985) and (ii) in cultured lymphocytes and macrophages, and in T- and B-lymphocytederived cell lines (Ardawi & Newsholme 1983, 1985; Newsholme et al. 1988). 3 A high rate of glutamine utilization by lymphocytes in vitro maintains unusually high intracellular concentrations of glutamine, glutamate, aspartate and lactate. Very similar levels of these intermediates are seen in intact lymph nodes removed from anaesthetized rats and frozen rapidly prior to extraction of the tissues (T. Piva and E.A. Newsholme, unpublished data). In addition, although various lymphocyte subsets have not been studied, the available evidence suggests that B- and T-lymphocytes utilize glutamine at similar rates (Ardawi & Newsholme 1983, 1985; Newsholme et al. 1988). Surprisingly, little of the carbon of glucose (< 10%) and only some of that of glutamine (10–30%) is oxidized completely by these cells: glucose is converted almost totally into lactate, glutamine into glutamate, aspartate, alanine and CO2. The partial oxidation of these fuels is known as glycolysis and glutaminolysis, respectively. From these simple metabolic characteristics several questions arise. 1 What is the significance of these high rates? 2 Why is the oxidation only partial? 3 What are the consequences for the whole organism? 4 Does the plasma glutamine level ever decrease sufficiently to decrease the rate of such utilization by these cells, and hence decrease their ability to respond to an immune challenge? High rates of glycolysis and glutaminolysis will provide energy for these cells. In addition, glutamine provides nitrogen for synthesis of several important compounds, e.g. purine and pyrimidine nucleotides, which are needed for the synthesis of new DNA and RNA during pro- 160 nutrition and exercise liferation of lymphocytes and for mRNA synthesis and DNA repair in macrophages. This will also be important for the production of these and other cells in the bone marrow, especially when stimulated to increase their production during trauma, infection, burns and if white cells are damaged, for example, during exercise. However, when it has been quantitatively studied — so far, only in lymphocytes — the rate of glutaminolysis is very markedly in excess of the rates of synthesis of these compounds. For example, the rate of utilization of glutamine by lymphocytes is very much greater than the measured rate of synthesis of uridine nucleotides and much higher than the maximum activity of the rate limiting enzyme, carbamoyl phosphate synthase II (Newsholme & Leech 1999). A theory has been proposed which accounts both for these high rates of glutamine utilization and the fact that its oxidation is partial. The synthetic pathways for de novo nucleotide synthesis require specific and precise increases in the rate of synthesis of these nucleotides during the proliferative process. This theory is known as branched point sensitivity and has been discussed in detail elsewhere (Newsholme et al. 1985). The important point to emerge from this is that glutamine (and glucose) must be used at a high rate by some of the cells of the immune system even when they are quiescent, since an immune challenge can occur at any time so that cells must be ‘primed’ to respond whenever there is an invasion by a foreign organism. This requires glutamine to be available in the bloodstream at a fairly constant level. Furthermore, if pyruvate produced from glutamine were fully oxidized via the Krebs cycle, the cells might produce too much ATP, and this could lead to inhibition of the rates of glutaminolysis and branched-point sensitivity would be lost. Consistent with the branched-point sensitivity theory, it has been shown that a decrease in the glutamine concentration in culture medium below that normally present in plasma decreases the maximum rate of proliferation and slows the response to a mitogenic signal in both human and rat lymphocytes, even though they are provided with all other nutrients and growth factors in excess (ParryBillings et al. 1990b). In addition, a decrease in glutamine concentration also decreased phagocytosis and the rate of cytokine production by macrophages. Several tissues, including liver, muscle, adipose and lung, can synthesize and release glutamine into the bloodstream. This is important, since 50–60% of the glutamine that enters the body via protein in the diet is utilized by the intestine. Thus, the glutamine required by other tissues, including the immune system, must be synthesized within the body. Quantitatively, the most important tissue for synthesis, storage and release of glutamine is thought to be skeletal muscle. As much glutamine is stored in muscle as glycogen is stored in liver, and the rate of release across the plasma membrane, which occurs via a specific transporter, appears to be controlled by various hormones (Newsholme & Parry-Billings 1990). Because of the importance of glutamine for cells of the immune system, it is suggested that immune cells may communicate with skeletal muscle to regulate the rate of glutamine release. This may also involve some cytokines and glucocorticoids. The plasma concentration of glutamine is decreased in conditions such as major surgery (Powell et al. 1994); burns (Stinnett et al. 1982; Parry-Billings et al. 1990b); starvation (Marliss et al. 1971); sepsis (Clowes et al. 1980; Roth et al. 1982). There is also evidence that the immune system is suppressed in clinical trauma (Baker et al. 1980; Green & Faist 1988). The requirement for glutamine, synthesized within muscle and other cells, will therefore be increased in these conditions, since there will be increased activity of the immune system, and an increased number of cells involved in proliferation and repair. Similarly, damage caused to muscle by prolonged, exhaustive exercise will also lead to a greater demand for glutamine. Although the plasma glutamine concentration is increased in athletes undertaking short-term exercise (Decombaz et al. 1979), it is decreased in prolonged, exhaustive exercise (Poortmans et al. 1974; Castell et al. 1996) and in overtraining (Parry-Billings 1989; Parry- amino acids, fatigue and immunodepression Billings et al. 1990a; Rowbottom et al. 1996; see also Budgett et al. 1998). In a study on athletes with the overtraining syndrome (Parry-Billings 1989), the plasma concentrations of alanine and branched-chain amino acids were similar in trained and overtrained athletes. However, the plasma concentration of glutamine was lower in overtrained athletes compared with that in trained athletes and the concentration in trained subjects was lower than in recreational runners (Parry-Billings et al. 1990a). Moreover, after a 6-week recovery period, despite a significant improvement in the exercise performance of these subjects, the plasma glutamine concentration remained below control values. This suggests that immunodepression due to overtraining may persist for longer periods than indicated by the decrease in physical performance. Exercise-induced immunodepression has been demonstrated in a large number of different types of athletes, including runners, swimmers, skiers (Noakes 1992) and ballet dancers (Sun et al. 1988). It is therefore suggested that intense, prolonged exercise, particularly if it is undertaken regularly, can cause a marked decrease in the plasma glutamine level, and that this might result in immunodepression. Can muscle, together with other tissues, always respond sufficiently to release enough glutamine to maintain the normal blood concentration? This may be a particularly relevant question if muscle is damaged due to excessive exercise. However, the reason for the decrease in the plasma glutamine concentration in longer term, strenuous exercise is not understood. Enzymes which are normally localized in muscle fibres appear in the blood and are assumed to be evidence of disruption or increased permeability of the muscle cell membranes (Altland & Highman 1961; Newham et al. 1983). The occurrence of muscle damage after prolonged exercise has been reported by Appell et al. (1992), who observed increased levels of circulating complement anaphylotoxin, which is a likely result of tissue damage. Tiidus and Ianuzzo (1983) observed that the extent of injury 161 is proportional to the intensity of exercise. Muscle injuries have been found to be widespread in military personnel during strenuous training (Greenberg & Arneson 1967; Armstrong 1986). Although it might be hypothesized that the marked decrease in plasma glutamine after prolonged exhaustive exercise could be due to an inhibition of the glutamine release mechanism, it seems unlikely, since increased non-specific permeability of muscle cell membranes would be expected to lead to greater release of glutamine from muscle. The possibility arises that muscle damage caused by prolonged exercise presents an area of tissue which is larger than normal, to which immune cells might migrate (see Galun et al. 1987; Pabst & Binns 1989, 1992). As the numbers of these cells increase, activity increases and/or proliferation of some cells may result which, in turn, increases the local demand for glutamine. It is suggested that failure of muscle to provide enough glutamine could result in an impairment of the function of the immune system via lack of precision for the regulation of, for example, the rates of purine and pyrimidine nucleotide synthesis for DNA and RNA formation in lymphocytes (Newsholme 1994). It can be speculated that excessive damage could produce resistance to the proposed stimulatory effect of cytokines and glucocorticoids on glutamine release, e.g. by a reduction in the number of cytokine receptors and/or glucocorticoid receptors on muscle. Glutamine feeding in clinical situations Over many years, there has been considerable physiological interest in the phenomenon of hypoglycaemia, since this can cause abnormal function of the brain, which is normally dependent upon glucose as a fuel. Similar considerations should be applied to the maintenance of the plasma glutamine level, which can be considered to be as important a plasma fuel as that of glucose, but for different cells. Furthermore, the requirement for glutamine, synthesized within muscle and other cells, will increase after pro- 162 nutrition and exercise longed exhaustive exercise, since there will be increased activity of the immune system, and an increased number of cells involved in proliferation to carry out the necessary repair. The question therefore arises as to whether extra glutamine should be provided after exhaustive exercise. Evidence that both parenteral and enteral glutamine feeding can have beneficial effects comes from several clinical studies: of particular relevance to this chapter is the evidence that glutamine has a beneficial effect upon some cells of the immune system in the patients investigated (Table 11.3). Exercise, infections and immunodepression Strenuous exercise and upper respiratory tract infections Upper respiratory tract infections (URTI) occur frequently in athletes after prolonged, exhaustive exercise compared with the normal seden- Table 11.3 Some beneficial effects of glutamine feeding upon the immune system. Recipients Clinical situation Method of feeding Beneficial effects Reference Humans Bone marrow transplant TPN (l-glutamine) Decreased number of positive microbial cultures Ziegler et al. 1992, 1998 Decreased number of clinical infections Enhanced recovery of circulating lymphocytes, total T-lymphocytes, CD4 helper, CD8 suppressor Humans Colorectal cancer TPN (glycylEnhanced postoperative glutamine dipeptide) T-lymphocyte DNA synthesis O’Riordain et al. 1994 Humans Severe, acute pancreatitis TPN (glycylEnhanced T-cell response, glutamine dipeptide) decreased interleukin 8 production O’Riordain et al. 1996 Rats Healthy, suppressed biliary immunoglobulin A TPN (l-glutamine) Rats Tumour-bearing TPN (alanylIncreased phagocytic activity glutamine dipeptide) of alveolar macrophages Kweon et al. 1991 Rats Tumour-bearing Oral Shewchuk et al. 1997 Rats Sepsis TPN (alanylIncreased rate of lymphocyte glutamine dipeptide) proliferation and increased number of lymphocytes Yoshida et al. 1992 Rats Chemotherapy Oral Klimberg et al. 1992 TPN, total parenteral nutrition. Increased biliary concentration Burke et al. 1989 of immunoglobulin A normally suppressed by TPN Increased mitogenic response in splenocytes, increased NK cell numbers in spleen but not activity Decreased sepsis defined as decreased white blood cell count plus decreased positive blood cultures amino acids, fatigue and immunodepression tary population or with non-competing athletes (Linde 1987; Fitzgerald 1991; Brenner et al. 1994; Nieman 1994a; Weidner 1994). For example, in a study on participants in the Los Angeles marathon who did not have an infection before the race, the number of runners who became ill during the week after the race was almost sixfold higher than that of the control group. The control group comprised endurance athletes who had undergone a similar level of training but who did not participate in the marathon (Nieman et al. 1990). A high incidence of infections has also been observed in military personnel undergoing prolonged and repeated intensive training (Lee 1992; Gray et al. 1994). It has been suggested that moderate, regular exercise helps to reduce the level of infection in sedentary individuals but that, in individuals who undertake intensive or excessive training, the incidence of infection can increase sharply. An overall view of this situation has been graphically described by a ‘J-curve’ (Fig. 11.2) which is emphasized as being descriptive, rather than quantitative (Nieman 1994a). r i s k fact ors for upper respiratory tract infection 163 demiological studies which have investigated the incidence of URTI in different sports. The majority of the studies which showed an increased incidence of URTI after physical activity have been performed on runners. A longitudinal study on 530 male and female runners suggested that an URTI was more likely to occur with higher training mileage (Heath et al. 1991). Similarly, the risk of illness increased in endurance runners when training exceeded 97 km · week–1 (Nieman 1994b). Another study, on marathon runners, demonstrated that the stress of competition more than doubled the risk of getting an URTI (O’Connor et al. 1979). A low body mass may be another risk factor for infections (Heath et al. 1991). One problem associated with prolonged exercise is that athletes start at some point to breathe through the mouth rather than through the nose, thus bypassing the nasal filter mechanism (Niinima et al. 1980). This dries up bronchial secretions, thus impeding the protective activity of the cilia which cover the cell surface with mucous (Rylander 1968). The high incidence of infections after prolonged, exhaustive exercise suggests therefore that immunodepression may occur in some athletes due to the stress of hard training and/or competition. Weidner (1994) critically evaluated 10 epiImmune response to exhaustive exercise Incidence of infection Excessive training Sedentary Moderate regular exercise Fig. 11.2 The incidence of infection in sedentary individuals can be decreased with moderate exercise but increases sharply in individuals who undertake excessive amounts of exercise, or who suffer from over-training. From Nieman (1994a), with permission. There is evidence that numbers of circulating white blood cells and subsets, together with cytokine levels, are markedly altered as a result of prolonged, exhaustive exercise. A substantial increase in numbers of circulating white blood cells, mainly due to a large increase in circulating neutrophils, was first observed by Larrabee (1902). Despite earlier reports of leucocytosis and, particularly, an increase in circulating numbers of neutrophils, relatively little work has been undertaken on this phenomenon until the past few years. Recently, however, several publications have reported not only that the total number of white blood cells in the circulation are substantially increased during the recovery period immediately after a marathon or inten- 164 nutrition and exercise sive training session but that numbers of lymphocytes in the circulation decrease below preexercise levels during the recovery period and lymphocyte proliferation is impaired (see Fry et al. 1992; Haq et al. 1993; Nieman 1994a, 1994b; Castell & Newsholme 1998). There is now also considerable evidence that prolonged, exhaustive exercise is associated with adverse effects on immune function (for reviews, see Brenner et al. 1994; Shinkai et al. 1994; Nieman 1997; Pedersen et al. 1998). These effects include: • decreased cytolytic activity of natural killer cells; • lower circulating numbers of T-lymphocytes for 3– 4 h after exercise; • a decrease in the proliferative ability of lymphocytes; • impaired antibody synthesis; • decreased immunoglobulin levels in blood and saliva; • a decreased ratio of CD4 to CD8 cells. In contrast, it has been suggested that lowintensity exercise is beneficial for the immune system (Fitzgerald 1988; Nieman 1994a, 1994b). Nehlsen-Cannarella et al. (1991) reported a 20% increase in serum immunoglobulins and a decrease in circulating T-cell numbers in mildly obese women after 6 weeks of brisk walking. Natural killer cell activity is enhanced by moderate exercise (Pedersen & Ullum 1994). Hack et al. (1997) reported a correlation between a decreased plasma glutamine concentration and circulating levels of CD4 cells after 8 weeks of anaerobic training. Rohde et al. (1996), in in vitro studies on T-cell derived cytokines, found that glutamine influenced the production of the cytokines interleukin 2 and g-interferon. In a study on triathletes, they also found that a time course of changes in serum glutamine correlated with changes in lymphokine-activated killer cell activities. If, as indicated above, glutamine is important for the immune system, then provision of glutamine might be beneficial for athletes at particular times during their training. glutamine feeding after prolonged exhaustive exercise Since the plasma concentration of glutamine is decreased by approximately 25% in endurance runners after a marathon as well as in clinical conditions, a series of studies was undertaken in which glutamine was administered. The first study established a suitable glutamine dose and timing in resting, normal subjects (Castell & Newsholme 1997). The results showed that glutamine (at concentrations of 0.1 g · kg–1 body weight and 5 g per subject), given as a drink, significantly increased the plasma glutamine concentration within 30 min in healthy humans. This level returned to close to baseline levels after approximately 2 h. The effect of giving glutamine or a placebo after exercise was subsequently investigated in full and ultramarathon runners. Glutamine (5 g l-glutamine (GlutaminOx5, Oxford Nutrition Ltd) in 330 ml mineral water) or placebo (maltodextrin) was given to athletes on a doubleblind basis after prolonged, exhaustive exercise. Athletes were asked to take two drinks (glutamine/placebo), the first drink immediately after exercise and the second drink 1 or 2 h after exercise. This timing was chosen as a result of information obtained from the glutamine feeding studies in normal subjects. Blood samples were also taken after exercise, before and after a glutamine or placebo drink. In addition to measurement of plasma glutamine and cytokine concentrations and acute phase markers, numbers of leucocytes and lymphocytes (for details, see Castell et al. 1996) were measured before and after the drinks, as well as CD4 and CD8 cells (Castell & Newsholme 1997). The plasma concentrations of glutamine and branched-chain amino acids were decreased (23% and 26%, respectively) 1 h after the marathon but had returned to normal the next morning (Castell et al. 1997). The number of leucocytes tripled in the blood samples taken from runners immediately after the marathon. This leucocytosis, due mainly to a substantial increase amino acids, fatigue and immunodepression in numbers of neutrophils, was sustained in the sample taken at 1 h postexercise. A substantial decrease, to below baseline, was observed in numbers of circulating T-cells 1 h after exhaustive exercise. However, there was a 30% decrease in total lymphocytes at the same time point. There was no significant difference in leucocyte or lymphocyte numbers between the glutamine and the placebo group. The provision of glutamine appeared to have a beneficial effect upon the ratio of CD4 to CD8 T-cells (Castell & Newsholme 1997). A decrease in this ratio has been suggested as being a possible cause and indicator of immunosuppression in athletes (Nash 1986; Keast et al. 1988; Shepherd et al. 1991). Questionnaires were given during the studies to establish the incidence of infection for 7 days after exercise (for details, see Castell et al. 1996). Completed questionnaires on the incidence of infection were received from more than 200 individuals in 14 studies, who participated in rowing, or endurance or middle-distance running. The levels of infection were lowest in middle-distance runners, and were highest in runners after a full or ultramarathon and in elite rowers after a period of intensive training (Table 11.4). The majority of the infections reported were URTIs. Athletes who consumed two drinks, containing either glutamine or a placebo, immediately after and 2 h after a marathon, also completed 7-day questionnaires (n = 151). Overall, the level of infections reported by the glutamine group was considerably less than that reported Table 11.4 Incidence of infections in athletes during 7 days after different types of exercise (mean values ± SEM). After Castell et al. (1996a), with permission. Event No. of studies No. of participants Infections (%) Marathon Ultramarathon Mid-distance race Rowing 5 2 3 4 88 40 41 45 46.8 ± 4.8 43.3 ± 4.8 24.7 ± 4.0 54.5 ± 7.8 165 by the placebo group (Table 11.5). A simple explanation for the effects of glutamine observed in these studies may be the fact that its provision after prolonged exercise might make more glutamine available for key cells of the immune system at a critical time for induction of infection. This series of studies provide more evidence for the fact that prolonged, exhaustive exercise such as a marathon produces a response which is analogous to some aspects of the acute phase response. Increases were demonstrated in acute phase response markers, such as C-reactive protein, interleukin 6 and complement C5a in blood samples taken after a marathon race (Castell et al. 1997). An increase in the activation of complement indicates enhanced macrophage activity which may be involved in clearance of fragments from damaged muscle tissue. The fourfold increase in the plasma concentration of C-reactive protein, observed 16 h after the race, is consistent with damage to muscle after prolonged, exhaustive exercise. The studies also confirm observations made by others (for reviews, see Brenner et al. 1994; Nieman 1994a; Shinkai et al. 1994), viz. that, after marathon running, decreases occurred in the numbers of some circulating immune cells which were sustained until at least the next day (Castell et al. 1997). In one glutamine feeding study in this series, the numbers of circulating lymphocytes, Table 11.5 Overall incidence of infections during 7 days for athletes given either glutamine or placebo after running a marathon (mean values ± SEM). After Castell et al. (1996a), with permission. No. of participants No. of participants with no reported infections Participants with no reported infections (%) Glutamine 72 57 80.8 ± 4.2* Placebo 79 31 48.8 ± 7.4 * Statistical significance between glutamine and placebo groups (P < 0.001). 166 nutrition and exercise which decreased 1 h after a marathon, were restored next morning to baseline levels in the glutamine group, compared with the placebo group (Castell et al. 1997). In another of these studies, white blood cells and neutrophils were elevated after a marathon, but were closer to baseline levels (P < 0.05 and < 0.001, respectively) the next morning in the glutamine group compared with the placebo group. For future studies, it would be of interest to take samples at daily intervals after a marathon in order to monitor immune cell function, since the effect of a viral attack should be manifest within 2–3 days of running a marathon. No increase in the plasma concentration of glutamine was observed in samples from those marathon runners who received glutamine drinks after the race. However, for logistical reasons, blood samples were not taken until an hour after glutamine feeding, whereas the peak concentration of plasma glutamine after a bolus dose at rest occurred at 30 min (Castell & Newsholme 1997). Glutamine supplementation in the doses used, and at the times ingested after this series of marathon studies, appeared to modify the incidence of URTI and to effect two or three changes in concentrations of acute phase response markers or in circulating cell populations. An important issue is whether measurements of the numbers and activities of leucocytes in the blood properly reflect the performance of the immune system in the whole body. In human studies, it is the only measurable link we have with the much larger number of cells in the whole immune system but the authors are aware of the dangers of overinterpretation of these data. The safety and efficacy of glutamine feeding have been discussed by Ziegler et al. (1990).There are now more than 120 published reports on glutamine feeding studies: no problems of toxicity have been reported. It is suggested that, in situations where plasma glutamine levels in individuals are low, provision of exogenous glutamine is a safe and simple method of restoring physiological levels. This might enhance the functional ability of cells of the immune system, as well as improving the digestive and defence mechanisms of the intestine, both for the patient and the athlete. Conclusion In summary, the picture which emerges from these studies is that infection levels are higher in athletes undergoing exhaustive exercise of long duration than in those undertaking shorter or more moderate exercise. Glutamine concentration in the blood is decreased more by prolonged, exhaustive exercise than by anaerobic/aerobic or moderate exercise. More marked leucocytosis and subsequent decrease in lymphocytes occurs as a result of prolonged, exhaustive exercise than anaerobic/aerobic or moderate exercise. The decreases tend to occur at similar times and within 3–4 h after prolonged, exhaustive exercise: this creates an opportunity for apparent immunosuppression to occur, which may coincide with exposure to viral or bacterial agents. The net result is an increase in the number of infections, which appears to be modified by glutamine feeding. Much more work needs to be done, preferably in well-controlled field studies, to obtain a more accurate picture of precisely how glutamine might be affecting the levels of infection perceived in athletes after prolonged, exhaustive exercise. Acknowledgements The authors are indebted to the subjects for their willing participation in the studies, and to Professor Jacques Poortmans for his helpful comments on this chapter. References Altland, P.D. & Highman, B. (1961) Effects of exercise on serum enzyme values and tissues of rats. American Journal of Physiology 201, 393–395. Appell, H.J., Soares, J.M.C. & Duarte, J.A.R. (1992) Exercise, muscle damage and fatigue. Sports Medicine 13, 108–115. Ardawi, M.S.M. & Newsholme, E.A. (1983) Glutamine amino acids, fatigue and immunodepression metabolism in lymphocytes of the rat. Biochemical Journal 212, 835–842. Ardawi, M.S.M. & Newsholme, E.A. (1985) Metabolism in lymphocytes and its importance in the immune response. Essays in Biochemistry 21, 1–44. Armstrong, R.B. (1986) Muscle damage and endurance events. Sports Medicine 3, 370–381. Bailey, S.P., Davis, J.M. & Ahlborn, E.N. (1992) Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica 145, 75–76. Baker, C.C., Oppenheimer, L., Stephens, B., Lewis, F.R. & Trunkey, D.D. (1980) Epidemiology of trauma deaths. American Journal of Surgery 140, 144–150. Blomstrand, E., Perrett, D., Parry-Billings, M. & Newsholme, E.A. (1989) Effect of sustained exercise on plasma amino acid concentrations and on 5hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiologica Scandinavica 136, 473–481. Blomstrand, E., Hassmen, P. & Newsholme, E.A. (1991a) Administration of branched-chain amino acids during sustained exercise: effects on performance and on the plasma concentration of some amino acids. European Journal of Applied Physiology 63, 83–88. Blomstrand, E., Hassmen, P. & Newsholme, E.A. (1991b) Effects of branched-chain amino acid supplementation on mental performance. Acta Physiologica Scandinavica 143, 225–226. Blomstrand, E., Andersson, S., Hassmen, P., Ekblom, B. & Newsholme, E.A. (1995) Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiologica Scandinavica 153, 87–96. Blomstrand, E., Hassmen, P., Ek, S., Ekblom, B. & Newsholme, E.A. (1997) Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiologica Scandinavica 159, 41–49. Brenner, I.K.M., Shek, P.N. & Shephard, R.J. (1994) Infection in athletes. Sports Medicine 17, 86–107. Budgett, R., Castell, L.M. & Newsholme, E.A. (1998) The overtraining syndrome. In Oxford Textbook for Sports Medicine (ed. M. Harries), pp. 367–377. Oxford University Press, Oxford. Burke, D.J., Alverdy, J.A., Aoys, E. & Moss, G.S. (1989) Glutamine-supplemented total parenteral nutrition improves gut immune function. Archives of Surgery 124, 1396–1399. Calders, P., Pannier, J.-L., Matthys, D.M. & Lacroix, E.M. (1997) Pre-exercise branched-chain amino acid administration increases endurance performance in rats. Medicine and Science in Sports and Exercise 29, 1182–1186. 167 Castell, L.M. & Newsholme, E.A. (1997) The effects of oral glutamine supplementation upon athletes after prolonged, exhaustive exercise. Nutrition 13, 738–742. Castell, L.M. & Newsholme, E.A. (1998) Glutamine and the effects of exhaustive exercise upon the immune response. Canaclian Journal of Physiology and Pharmacology 76, 524–532. Castell, L.M., Poortmans, J. & Newsholme, E.A. (1996) Does glutamine have a role in reducing infections in athletes? European Journal of Applied Physiology 73, 488–491. Castell, L.M., Poortmans, J.R., Leclercq, R., Brasseur, M., Duchateau, J. & Newsholme, E.A. (1997) Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. European Journal of Applied Physiology 75, 47–53. Clowes, G.A., Heiderman, M., Lundberg, B. et al. (1980) Effects of parenteral alimentation on amino acid metabolism in septic patients. Surgery 88, 531–543. Decombaz, J., Reinhardt, P., Anantharaman, K., von Glutz, G. & Poortmans, J.R. (1979) Biochemical changes in a 100 km run: free amino acids, urea and creatinine. European Journal of Applied Physiology 41, 61–72. Fernstrom, J.D. (1990) Aromatic amino acids and monamine synthesis in the CNS: influence of the diet. Journal of Nutrition and Biochemistry 1, 508–517. Fischer, H.G., Hollman, W. & De Meirleir, K. (1991) Exercise changes in plasma tryptophan fractions and relationship with prolactin. International Journal of Sports Medicine 12, 487–489. Fitts, R.H. (1994) Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 49–94. Fitzgerald, L. (1988) Exercise and the immune system. Immunology Today 9, 337–339. Fitzgerald, L. (1991) Overtraining increases the susceptibility to infection. International Journal of Sports Medicine 12, 55–58. Fry, R.W., Morton, A.R., Crawford, G.P.M. & Keast, D. (1992) Cell numbers and in vitro responses of leucocytes and lymphocyte subpopulations following maximal exercise and interval training sessions of different intensities. European Journal of Applied Physiology 64, 218–227. Galiano, F.J., Davis, J.M., Bailey, S.P., Woods, J.A. & Hamilton, M. (1991) Physiologic, endocrine and performance effects of adding branch chain amino acids to a 6% carbohydrate-electrolyte beverage during prolonged cycling. Medicine and Science in Sports and Exercise 23, S14. Galun, E., Burstein, R. & Assia, E. (1987) Changes of white blood cell count during prolonged exercise. International Journal of Sports Medicine 8, 253–255. Gray, G.C., Mitchell, B.S., Tueller, J.E. et al. (1994) Adult pneumonia hospitalizations in the US Navy: rates 168 nutrition and exercise and risk factors for 6522 admissions, 1981–91. American Journal of Epidemiology 139, 793–802. Green, D.R. & Faist, E. (1988) Trauma and the immune response. Immunology Today 9, 253–255. Greenberg, J. & Arneson, L. (1967) Exertional rhabdomyolosis with myoglobinuria in a large group of military trainees. Neurology 17, 216–222. Hack, V., Weiss, C., Friedmann, B. et al. (1997) Decreased plasma glutamine level and CD +4 T cell number in response to 8 wk of anaerobic training. American Journal of Physiology 272, E788–E795. Haq, A., Al-Hussein, K., Lee, J. & Al-Sedairy, S. (1993) Changes in peripheral blood lymphocyte subsets associated with marathon running. Medicine and Science in Sports and Exercise 25, 186–190. Hassmen, P., Blomstrand, E., Ekblom, B. & Newsholme, E.A. (1994) Branched-chain amino acid supplementation during 30-km competitive run: mood and cognitive performance. Nutrition 10, 405– 410. Heath, G.W., Ford, E.S., Craven, T.E., Macera, C.A., Jackson, K.L. & Pate, R.R. (1991) Exercise and the incidence of upper respiratory tract infections. Medicine and Science in Sports and Exercise 23, 152–157. Hefler, S.K., Wideman, L., Gaesser, G.A. & Weltman, A. (1995) Branched-chain amino acid supplementation improves endurance performance in competitive cyclists. Medicine and Science in Sports and Exercise 27 (Suppl.), S5. Jakeman, P.M., Hawthorne, J.E., Maxwell, S.R., Kendall, M.J. & Holder, G. (1994) Evidence for downregulation of hypothalamic 5-hydroxytryptamine receptor function in endurance-trained athletes. Experimental Physiology 79, 461–464. Keast, D., Cameron, K. & Morton, A.R. (1988) Exercise and immune response. Sports Medicine 5, 248–267. Klimberg, V.S., Nwokedi, E., Hutchins, L.F. et al. (1992) Glutamine facilitates chemotherapy while reducing toxicity. Journal of Parenteral and Enteral Nutrition 16, 83–87S. Kweon, M.N., Moriguchi, S., Mukai, K. & Kishino, Y. (1991) Effect of alanylglutamine-enriched infusion on tumor growth and cellular immune function in rats. Amino Acids 1, 7–16. Larrabee, R.C. (1902) Leucocytosis after violent exercise. Journal of Medicine Research 2, 76–82. Lee, D.J. (1992) Immune responsiveness and risk of illness in US Air Force Academy recruits during basic recruit training. Aviation Space and Environmental Medicine 63, 517–523. Linde, F. (1987) Running and upper respiratory tract infections. Scandinavian Journal of Sports Science 9, 21–23. Madsen, K., MacLean, D.A., Kiens, B. & Christensen, D. (1996) Effects of glucose, glucose plus branchedchain amino acids, or placebo on bike performance over 100 km. Journal of Applied Physiology 81, 2644–2650. Marliss, E.B., Aoki, T.T., Pozefsky, T., Most, A.S. & Cahill, G.F. (1971) Muscle and splanchnic glutamine metabolism in postabsorptive and starved men. Journal of Clinical Investigation 50, 814–817. Mittleman, K.D., Ricci, M.R. & Bailey, S.P. (1998) Branched-chain amino acids prolong exercise during heat stress in men and women. Medicine and Science in Sports and Exercise 30, 83–91. Nash, H.L. (1986) Can exercise make us immune to disease? Physician and Sportsmedicine 14, 251–253. Nehlsen-Cannarella, S.L., Nieman, D., BalkLamberton, A.J. et al. (1991) The effects of moderate exercise training on immune response. Medicine and Science in Sports and Exercise 23, 64–70. Newham, D.H., Jones, D.A. & Edwards, R.H.T. (1983) Large delayed plasma creatine kinase changes after stepping exercise. Muscle and Nerve 6, 380–385. Newsholme, E.A. (1994) Biochemical mechanisms to explain immunosuppression. International Journal of Sports Medicine 15, S142–S147. Newsholme, E.A. & Leech, A.R. (1999) Biochemistry for the Medical Sciences. John Wiley & Sons, Chichester (in press). Newsholme, E.A. & Parry-Billings, M. (1990) Properties of glutamine release from muscle and its importance for the immune system. Journal of Parenteral and Enteral Nutrition 14, 63–67S. Newsholme, E.A., Crabtree, B. & Ardawi, M.S.M. (1985) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Quarterly Journal of Experimental Physiology 70, 473– 489. Newsholme, E.A., Newsholme, P., Curi, R. et al. (1988) A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns. Nutrition 4, 261–268. Newsholme, E.A., Leech, A.R. & Duester, G. (1994) Keep on Running. Wiley, Chichester. Nieman, D. (1994a) Exercise, infection, and immunity. International Journal of Sports Medicine 15, S131–141. Nieman, D. (1994b) Exercise, upper respiratory tract infection and the immune system. Medicine and Science in Sports and Exercise 26, 128–139. Nieman, D. (1997) Immune response to heavy exertion. Journal of Applied Physiology 82, 1385–1394. Nieman, D., Johanssen, L.M., Lee, J.W. & Arabatzis, K. (1990) Infectious episodes before and after the Los Angeles marathon. Journal of Sports Medicine and Physical Fitness 30, 289–296. Niinima, V., Cole, P., Mintz, S. & Shephard, R.J. (1980) The switching point from nasal to oronasal breathing. Respiration Physiology 42, 61–71. Noakes, T.D. (1992) The Lore of Running, 2nd edn. Oxford University Press, Oxford. amino acids, fatigue and immunodepression O’Connor, S.A., Jones, D.P., Collins, J.V., Heath, R.B., Campbell, M.J. & Leighton, M.H. (1979) Changes in pulmonary function after naturally acquired respiratory infection in normal persons. American Review of Respiratory Disease 120, 1087–1093. O’Riordain, M.G., Fearon, K.C.H., Ross, J.A. et al. (1994) Glutamine-supplemented total parenteral nutrition enhances T-lymphocyte response in surgical patients undergoing colorectal resection. Annals of Surgery 220, 212–221. O’Riordain, M.G., De Beaux, A. & Fearon, K. (1996) Effect of glutamine on immune function in the surgical patient. Nutrition 12, S82–S84. Pabst, R. & Binns, R.M. (1989) Heterogeneity of lymphocyte homing physiology: several mechanisms operate in the control of migration to lymphoid and non-lymphoid organs in vivo. Immunological Reviews 108, 83–109. Pabst, R. & Binns, R.M. (1992) Lymphocyte trafficking. In Encyclopaedia of Immunology (ed. I. Roitt & P.S. Delves), Vol. 2, pp. 1003–1005. Academic Press, London. Parry-Billings, M. (1989) Studies of glutamine release from skeletal muscle. D.Phil. thesis, University of Oxford. Parry-Billings, M., Blomstrand, E., McAndrew, N. & Newsholme, E.A. (1990a) A communicational link between skeletal muscle, brain, and cells of the immune system. International Journal of Sports Medicine 11, S122. Parry-Billings, M., Evans, J., Calder, P.C. & Newsholme, E.A. (1990b) Does glutamine contribute to immunosuppression? Lancet 336, 523–525. Pedersen, B.K. & Ullum, H. (1994) NK cell response to physical activity: possible mechanisms of action. Medicine and Science in Sports and Exercise 26, 140–146. Pedersen, B.K., Rohde, T. & Ostrowski, K. (1998) Recovery of the immune system after exercise. Acta Physiologica Scandinavica 162, 325–332. Poortmans, J.R., Siest, G., Galteau, M.M. & Houot, O. (1974) Distribution of plasma amino acids in humans during submaximal prolonged exercise. European Journal of Applied Physiology 32, 143–147. Powell, H., Castell, L.M., Parry-Billings, M. et al. (1994) Growth hormone suppression and glutamine flux associated with cardiac surgery. Clinical Physiology 14, 569–590. Rohde, T., MacLean, D.A., Hartkopp, A. & Pedersen, B.K. (1996) The immune system and serum glutamine during a triathlon. European Journal of Applied Physiology 74, 428–434. Roth, E., Karner, J., Ollenschlager, G. et al. (1982) Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clinical Nutrition 1, 25–41. Rowbottom, D.G., Keast, D. & Morton, A.R. (1996) The emerging role of glutamine as an indicator of 169 exercise stress and overtraining. Sports Medicine 21, 80–97. Rylander, R. (1968) Pulmonary defence mechanism to airborne bacteria. Acta Physiologica Scandinavica 72 (Suppl. 306), 6–85. Shepherd, R.J., Verde, T.J., Thomas, S.G. & Shek, P. (1991) Physical activity and the immune system. Canadian Journal of Sports Science 16, 163–185. Shewchuk, L.D., Baracos, V.E. & Field, C.J. (1997) Dietary l-glutamine supplementation reduces the growth of the Morris Hepatoma 7777 in exercisetrained and sedentary rats. Journal of Nutrition 127, 158–166. Shinkai, S., Shore, S., Shek, P.N. & Shepherd, R.J. (1994) Acute exercise and immune function. International Journal of Sports Medicine 13, 452–461. Soppi, E., Varjo, P., Eskola, J. et al. (1982) Effect of strenuous physical stress on circulating lymphocyte number and function before and after training. Journal of Clinical and Laboratory Immunology 8, 43– 46. Stinnet, J.D., Alexander, J.W., Watanabe, C. et al. (1982) Plasma and skeletal muscle amino acids following severe burn injury in patients and experimental animals. Annals of Surgery 195, 75–89. Struder, H.K., Hollman, W.K., Platen, P., Donike, M., Gotzmann, A. & Weber, K. (1998) Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Hormone and Metabolic Research 30, 188–194. Sun, X., Xu, Y., Zhu, R. & Li, S. (1988) Preliminary study on immunity in ballet dancers. Canadian Journal of Sports Science 13, 33. Tiidus, P.M. & Ianuzzo, C.D. (1983) Effects of intensity and duration of muscular exercise on delayed soreness and serum enzyme activities. Medicine and Science in Sports and Exercise 15, 461–465. Van Hall, G., Raaymakers, J.S.H., Saris, W.H.M. & Wagenmakers, A.J.M. (1995) Ingestion of branchedchain amino acids and tryptophan during sustained exercise in man: failure to affect performance. Journal of Physiology 486, 789–794. Wagenmakers, A.J.M. (1992) Role of amino acids and ammonia in mechanisms of fatigue. Medicine and Sport Science 34, 69. Weidner, T.G. (1994) Literature review: upper respiratory tract illness and sport and exercise. International Journal of Sports Medicine 15, 1–9. Wilson, W.M. & Maughan, R.J. (1992) Evidence for a possible role of 5-hydroxytryptamine in the genesis of fatigue in man: administration of paroxetine, a 5-HT re-uptake inhibitor, reduces the capacity to perform prolonged exercise. Experimental Physiology 77, 921–924. Winder, W.W. (1996) Malonyl CoA as a metabolic regulator. In Biochemistry of Exercise (ed. R.J. Maughan & 170 nutrition and exercise S.M. Sherriffs), Vol. 9, pp. 173–184. Human Kinetics: Champaign, IL. Yoshida, S., Hikida, S., Tanaka, Y. et al. (1992) Effect of glutamine supplementation on lymphocyte function in septic rats. Journal of Parenteral and Enteral Nutrition 16 (Suppl. 1). Ziegler, T.R., Benfell, K., Smith, R.J. et al. (1990) Safety and metabolic effects of l-glutamine administration in humans. Journal of Parenteral and Enteral Nutrition 14, S137–146. Ziegler, T.R., Young, L.S., Benfell, K. et al. (1992) Clinical and metabolic efficacy of glutamine supplemented parenteral nutrition after bone marrow transplantation. Annals of Internal Medicine 116, 821–828. Ziegler, T.R., Bye, R.L., Persinger, R.L., Young, L.S., Antin, J.H. & Wilmore, D.W. (1998) Effects of glutamine supplementation on circulating lymphocytes after bone marrow transplantation: a pilot study. American Journal of Medical Sciences 315, 4–10.