Comments
Description
Transcript
Power series in a complex variable
COMPLEX VARIABLES where i and j are the unit vectors along the x- and y-axes, respectively. A similar expression exists for ∇v, the normal to the curve v(x, y) = constant. Taking the scalar product of these two normal vectors, we obtain ∂u ∂v ∂u ∂v + ∂x ∂x ∂y ∂y ∂u ∂u ∂u ∂u + = 0, =− ∂x ∂y ∂y ∂x ∇u · ∇v = where in the last line we have used the Cauchy–Riemann relations to rewrite the partial derivatives of v as partial derivatives of u. Since the scalar product of the normal vectors is zero, they must be orthogonal, and the curves u(x, y) = constant and v(x, y) = constant must therefore intersect at right angles. Use the Cauchy–Riemann relations to show that, for any analytic function f = u + iv, the relation |∇u| = |∇v| must hold. From (24.9) we have |∇u|2 = ∇u · ∇u = ∂u ∂x 2 + ∂u ∂y 2 . Using the Cauchy–Riemann relations to write the partial derivatives of u in terms of those of v, we obtain 2 2 ∂v ∂v |∇u|2 = + = |∇v|2 , ∂y ∂x from which the result |∇u| = |∇v| follows immediately. 24.3 Power series in a complex variable The theory of power series in a real variable was considered in chapter 4, which also contained a brief discussion of the natural extension of this theory to a series such as f(z) = ∞ an z n , (24.10) n=0 where z is a complex variable and the an are, in general, complex. We now consider complex power series in more detail. Expression (24.10) is a power series about the origin and may be used for general discussion, since a power series about any other point z0 can be obtained by a change of variable from z to z − z0 . If z were written in its modulus and argument form, z = r exp iθ, expression (24.10) would become f(z) = ∞ an r n exp(inθ). n=0 830 (24.11) 24.3 POWER SERIES IN A COMPLEX VARIABLE This series is absolutely convergent if ∞ |an |r n , (24.12) n=0 which is a series of positive real terms, is convergent. Thus tests for the absolute convergence of real series can be used in the present context, and of these the most appropriate form is based on the Cauchy root test. With the radius of convergence R defined by 1 = lim |an |1/n , n→∞ R (24.13) the series (24.10) is absolutely convergent if |z| < R and divergent if |z| > R. If |z| = R then no particular conclusion may be drawn, and this case must be considered separately, as discussed in subsection 4.5.1. A circle of radius R centred on the origin is called the circle of convergence of the series an z n . The cases R = 0 and R = ∞ correspond, respectively, to convergence at the origin only and convergence everywhere. For R finite the convergence occurs in a restricted part of the z-plane (the Argand diagram). For a power series about a general point z0 , the circle of convergence is, of course, centred on that point. Find the parts of the z-plane for which the following series are convergent: (i) ∞ zn , n! n=0 (ii) ∞ n=0 n!z n , (iii) ∞ zn . n n=1 (i) Since (n!)1/n behaves like n as n → ∞ we find lim(1/n!)1/n = 0. Hence R = ∞ and the series is convergent for all z. (ii) Correspondingly, lim(n!)1/n = ∞. Thus R = 0 and the series converges only at z = 0. (iii) As n → ∞, (n)1/n has a lower limit of 1 and hence lim(1/n)1/n = 1/1 = 1. Thus the series is absolutely convergent if the condition |z| < 1 is satisfied. Case (iii) in the above example provides a good illustration of the fact that on its circle of convergence a power series may or may not converge. For this particular series, the circle of convergence is |z| = 1, so let us consider the convergence of the series at two different points on this circle. Taking z = 1, the series becomes ∞ 1 1 1 1 = 1 + + + + ··· , n 2 3 4 n=1 which is easily shown to diverge (by, for example, grouping terms, as discussed in subsection 4.3.2). Taking z = −1, however, the series is given by ∞ (−1)n n=1 n = −1 + 1 1 1 − + − ··· , 2 3 4 831