Comments
Description
Transcript
Hints and answers
16.7 HINTS AND ANSWERS (c) Show that the corresponding non-terminating series solutions Sm (z) have as their first few terms 9 1 S0 (z) = a0 z + z 3 + z 5 + · · · , 3! 5! 1 2 3 S1 (z) = a0 1 − z − z 4 − · · · , 2! 4! 3 3 15 5 S2 (z) = a0 z − z − z − · · · , 3! 5! 9 2 45 4 S3 (z) = a0 1 − z + z + · · · . 2! 4! 16.16 Obtain the recurrence relations for the solution of Legendre’s equation (18.1) in inverse powers of z, i.e. set y(z) = an z σ−n , with a0 = 0. Deduce that, if is an integer, then the series with σ = will terminate and hence converge for all z, whilst the series with σ = −( + 1) does not terminate and hence converges only for |z| > 1. 16.7 Hints and answers 16.1 16.3 16.5 16.7 16.9 16.11 Note that z = 0 is an ordinary point of the equation. For σ = 0, an+2 /an = [n(n + 2) − λ]/[(n + 1)(n + 2)] and, correspondingly, for σ = 1, U2 (z) = a0 (1 − 4z 2 ) and U3 (z) = a0 (z − 2z 3 ). σ = 0 and 3; a6m /a0 = (−1)m /(2m)! and a6m /a0 = (−1)m /(2m + 1)!, respectively. y1 (z) = a0 cos z 3 and y2 (z) = a0 sin z 3 . The Wronskian is ±3a20 z 2 = 0. (b) an+1 /an = [ ( + 1) − n(n + 1) ]/[ 2(n + 1)2 ]. (c) R = 2, equal to the distance between z = 1 and the closest singularity at z = −1. (−1)n z 2n A typical term in the series for y(σ, z) is . [ (σ + 2)(σ + 4) · · · (σ + 2n) ]2 The origin is an ordinary point. Determine the constant of integration by examining the behaviour z of the related functions for small x. y2 (z) = (exp z 2 ) 0 exp(−x2 ) dx. Repeated roots σ = 2. ∞ " (n + 1)(−2z)n+2 ! a y(z) = az 2 − 4az 3 + 6bz 3 + + b [ln z + g(n)] , n! 4 n=2 where g(n) = 16.13 16.15 1 1 1 1 − − − · · · − − 2. n+1 n n−1 2 The transformed equation is xy + 2y + y = 0; an = (−1)n (n + 1)−1 (n!)−2 a0 ; du/dz = A[ y1 (z) ]−2 . (a) (i) an+2 = [an (n2 − m2 )]/[(n + 2)(n + 1)], (ii) an+2 = {an [(n + 1)2 − m2 ]}/[(n + 3)(n + 2)]; (b) 1, z, 2z 2 − 1, 4z 3 − 3z. 553