Comments
Description
Transcript
Connectivity of regions
11.2 CONNECTIVITY OF REGIONS (a) (b) (c) Figure 11.2 (a) A simply connected region; (b) a doubly connected region; (c) a triply connected region. Since (x − y)2 = a2 (1 − sin 2φ), the line integral becomes π I = (x − y)2 ds = a3 (1 − sin 2φ) dφ = πa3 . C 0 As discussed in the previous chapter, the expression (10.58) for the square of the element of arc length in three-dimensional orthogonal curvilinear coordinates u1 , u2 , u3 is (ds)2 = h21 (du1 )2 + h22 (du2 )2 + h23 (du3 )2 , where h1 , h2 , h3 are the scale factors of the coordinate system. If a curve C in three dimensions is given parametrically by the equations ui = ui (λ) for i = 1, 2, 3 then the element of arc length along the curve is du1 2 du2 2 du3 2 + h22 + h23 dλ. ds = h21 dλ dλ dλ 11.2 Connectivity of regions In physical systems it is usual to define a scalar or vector field in some region R. In the next and some later sections we will need the concept of the connectivity of such a region in both two and three dimensions. We begin by discussing planar regions. A plane region R is said to be simply connected if every simple closed curve within R can be continuously shrunk to a point without leaving the region (see figure 11.2(a)). If, however, the region R contains a hole then there exist simple closed curves that cannot be shrunk to a point without leaving R (see figure 11.2(b)). Such a region is said to be doubly connected, since its boundary has two distinct parts. Similarly, a region with n − 1 holes is said to be n-fold connected, or multiply connected (the region in figure 11.2(c) is triply connected). 383