Comments
Description
Transcript
Permutation groups
GROUP THEORY The multiplication table for this set of six functions has all the necessary properties to show that they form a group. Further, if the symbols f1 , f2 , f3 , f4 , f5 , f6 are replaced by I, A, B, C, D, E respectively the table becomes identical to table 28.8. This justifies our earlier claim that this group of functions, with argument substitution as the law of combination, is isomorphic to the group of reflections and rotations of an equilateral triangle. 28.4 Permutation groups The operation of rearranging n distinct objects amongst themselves is called a permutation of degree n, and since many symmetry operations on physical systems can be viewed in that light, the properties of permutations are of interest. For example, the symmetry operations on an equilateral triangle, to which we have already given much attention, can be considered as the six possible rearrangements of the marked corners of the triangle amongst three fixed points in space, much as in the diagrams used to compute table 28.7. In the same way, the symmetry operations on a cube can be viewed as a rearrangement of its corners amongst eight points in space, albeit with many constraints, or, with fewer complications, as a rearrangement of its body diagonals in space. The details will be left until we review the possible finite groups more systematically. The notations and conventions used in the literature to describe permutations are very varied and can easily lead to confusion. We will try to avoid this by using letters a, b, c, . . . (rather than numbers) for the objects that are rearranged by a permutation and by adopting, before long, a ‘cycle notation’ for the permutations themselves. It is worth emphasising that it is the permutations, i.e. the acts of rearranging, and not the objects themselves (represented by letters) that form the elements of permutation groups. The complete group of all permutations of degree n is usually denoted by Sn or Σn . The number of possible permutations of degree n is n!, and so this is the order of Sn . Suppose the ordered set of six distinct objects {a b c d e f} is rearranged by some process into {b e f a d c}; then we can represent this mathematically as θ{a b c d e f} = {b e f a d c}, where θ is a permutation of degree 6. The permutation θ can be denoted by [2 5 6 1 4 3], since the first object, a, is replaced by the second, b, the second object, b, is replaced by the fifth, e, the third by the sixth, f, etc. The equation can then be written more explicitly as θ{a b c d e f} = [2 5 6 1 4 3]{a b c d e f} = {b e f a d c}. If φ is a second permutation, also of degree 6, then the obvious interpretation of the product φ • θ of the two permutations is φ • θ{a b c d e f} = φ(θ{a b c d e f}). 1056 28.4 PERMUTATION GROUPS Suppose that φ is the permutation [4 5 3 6 2 1]; then φ • θ{a b c d e f} = [4 5 3 6 2 1][2 5 6 1 4 3]{a b c d e f} = [4 5 3 6 2 1]{b e f a d c} = {a d f c e b} = [1 4 6 3 5 2]{a b c d e f}. Written in terms of the permutation notation this result is [4 5 3 6 2 1][2 5 6 1 4 3] = [1 4 6 3 5 2]. A concept that is very useful for working with permutations is that of decomposition into cycles. The cycle notation is most easily explained by example. For the permutation θ given above: the the the the 1st object, a, has been replaced by the 2nd, b; 2nd object, b, has been replaced by the 5th, e; 5th object, e, has been replaced by the 4th, d; 4th object, d, has been replaced by the 1st, a. This brings us back to the beginning of a closed cycle, which is conveniently represented by the notation (1 2 5 4), in which the successive replacement positions are enclosed, in sequence, in parentheses. Thus (1 2 5 4) means 2nd → 1st, 5th → 2nd, 4th → 5th, 1st → 4th. It should be noted that the object initially in the first listed position replaces that in the final position indicated in the bracket – here ‘a’ is put into the fourth position by the permutation. Clearly the cycle (5 4 1 2), or any other that involved the same numbers in the same relative order, would have exactly the same meaning and effect. The remaining two objects, c and f, are interchanged by θ or, more formally, are rearranged according to a cycle of length 2, a transposition, represented by (3 6). Thus the complete representation (specification) of θ is θ = (1 2 5 4)(3 6). The positions of objects that are unaltered by a permutation are either placed by themselves in a pair of parentheses or omitted altogether. The former is recommended as it helps to indicate how many objects are involved – important when the object in the last position is unchanged, or the permutation is the identity, which leaves all objects unaltered in position! Thus the identity permutation of degree 6 is I = (1)(2)(3)(4)(5)(6), though in practice it is often shortened to (1). It will be clear that the cycle representation is unique, to within the internal absolute ordering of the numbers in each bracket as already noted, and that 1057 GROUP THEORY each number appears once and only once in the representation of any particular permutation. The order of any permutation of degree n within the group Sn can be read off from the cyclic representation and is given by the lowest common multiple (LCM) of the lengths of the cycles. Thus I has order 1, as it must, and the permutation θ discussed above has order 4 (the LCM of 4 and 2). Expressed in cycle notation our second permutation φ is (3)(1 4 6)(2 5), and the product φ • θ is calculated as (3)(1 4 6)(2 5) • (1 2 5 4)(3 6){a b c d e f} = (3)(1 4 6)(2 5){b e f a d c} = {a d f c e b} = (1)(5)(2 4 3 6){a b c d e f}. i.e. expressed as a relationship amongst the elements of the group of permutations of degree 6 (not yet proved as a group, but reasonably anticipated), this result reads (3)(1 4 6)(2 5) • (1 2 5 4)(3 6) = (1)(5)(2 4 3 6). We note, for practice, that φ has order 6 (the LCM of 1, 3, and 2) and that the product φ • θ has order 4. The number of elements in the group Sn of all permutations of degree n is n! and clearly increases very rapidly as n increases. Fortunately, to illustrate the essential features of permutation groups it is sufficient to consider the case n = 3, which involves only six elements. They are as follows (with labelling which the reader will by now recognise as anticipatory): I = (1)(2)(3) C = (1)(2 3) A = (1 2 3) B = (1 3 2) D = (3)(1 2) E = (2)(1 3) It will be noted that A and B have order 3, whilst C, D and E have order 2. As perhaps anticipated, their combination products are exactly those corresponding to table 28.8, I, C, D and E being their own inverses. For example, putting in all steps explicitly, D • C{a b c} = (3)(1 2) • (1)(2 3){a b c} = (3)(12){a c b} = {c a b} = (3 2 1){a b c} = (1 3 2){a b c} = B{a b c}. In brief, the six permutations belonging to S3 form yet another non-Abelian group isomorphic to the rotation–reflection symmetry group of an equilateral triangle. 1058