65 167 PiwiInteracting RNAs and Transposon Control
by taratuta
Comments
Transcript
65 167 PiwiInteracting RNAs and Transposon Control
wea25324_ch16_471-521.indd Page 501 12/14/10 4:54 PM user-f469 /Volume/204/MHDQ268/wea25324_disk1of1/0073525324/wea25324_pagefile 16.7 Piwi-Interacting RNAs and Transposon Control to be silenced. Polymerase V makes longer RNAs from regions throughout the plant genome. These longer RNAs attract siRNA-Ago4 complexes, but only to regions that are targets for silencing, from which these siRNAs were made. These complexes in turn attract the enzymes required to methylate both DNA and histones, which in turn leads to heterochromatization. 16.7 Piwi-Interacting RNAs and Transposon Control In Chapter 23 we will learn that DNA elements known as transposons can transpose, or jump from place to place in a genome. In doing so, they can interrupt and inactivate genes, or even break chromosomes. Thus, transposition is a dangerous process that can lead to cell death or disease, such as cancer. Accordingly, it is important that cells be able to control transposition. This is particularly true in germ cells, which give rise to gametes that will pass genes on to the next generation. The serious mutations or cell death caused by transposition in germ cells reduce reproductive success and therefore threaten a species’s survival. It is not surprising, therefore, that organisms have evolved mechanisms for dealing with transposons, and that these can be targeted to germ cells. In fact, germ cells produce another class of small RNAs, 24 to 30 nt long, called Piwi-interacting RNAs (piRNAs). Like siRNAs and miRNAs, piRNAs associate with Argonaute proteins, but these proteins belong to a different branch, or clade, of the Argonaute superfamily than 3′-end processing 3′ Transposon mRNA the Ago proteins we have been discussing. The piRNAs bind to members of the Piwi clade, while siRNAs and miRNAs bind to members of the Ago clade. The piRNAs of fruit flies and mammals tend to be complementary to either the sense or antisense strand of transposons from the same organism. These piRNAs derive from clusters of piRNA genes, apparently via transcription of a long cluster and subsequent processing of the precursor RNA into mature piRNAs. Some, if not most, of this processing may actually occur simultaneously with inactivation of transposons, by a so-called ping-pong amplification loop, as follows (Figure 16.37): In Drosophila, Piwi proteins such as Piwi and Aubergine tend to associate with piRNAs that are complementary to transposon mRNAs; these piRNAs usually have a U in the first position. This piRNA-Piwi or -Aubergine complex can associate through base-pairing with a transposon mRNA, which triggers slicer cutting 10 nt upstream of an A that is base-paired to the U at the 59-end of the piRNA. This cut, together with processing at the 39-end of the transposon mRNA, creates a short RNA that can associate with another protein, Ago3, which preferentially binds to RNAs that represent parts of transposon mRNAs. The RNAAgo3 complex can then bind to a piRNA precursor RNA by base-pairing, and the slicer activity of Ago3 cuts just upstream of the U of the A–U base pair. This cut, together with end processing of the piRNA precursor, creates a mature piRNA that can bind to Piwi or Aubergine to start the cycle over. Note that this mechanism accomplishes two things: It slices up transposon mRNA, thereby blocking transposition, and it amplifies the amount of piRNA available, thus stimulating the process. Because the transcription of piRNA clusters is confined to germ cells, and somatic cells immediately piRNA 5′ U A Piwi/Aub 3′ 5′ Cut by slicer AGO3 Piwi/Aub 5′ U 5′ 3′ 3′-end processing 5′ 3′ 501 AGO3 A U 3′ 5′ piRNA cluster Cut by slicer Figure 16.37 Model for a ping-pong amplification loop for piRNAs. Details are in the text. A 3′