Comments
Description
Transcript
Hints and answers
6.6 HINTS AND ANSWERS (a) Let R be a real positive number and define Km by R 2 m Km = R − x2 dx. −R Show, using integration by parts, that Km satisfies the recurrence relation (2m + 1)Km = 2mR 2 Km−1 . (b) For integer n, define In = Kn and Jn = Kn+1/2 . Evaluate I0 and J0 directly and hence prove that In = 22n+1 (n!)2 R 2n+1 (2n + 1)! and Jn = π(2n + 1)!R 2n+2 . 22n+1 n!(n + 1)! (c) A sequence of functions Vn (R) is defined by V0 (R) = 1, Vn (R) = R −R Vn−1 √ R 2 − x2 dx, n ≥ 1. Prove by induction that V2n (R) = π n R 2n , n! V2n+1 (R) = π n 22n+1 n!R 2n+1 . (2n + 1)! (d) For interest, (i) show that V2n+2 (1) < V2n (1) and V2n+1 (1) < V2n−1 (1) for all n ≥ 3; (ii) hence, by explicitly writing out Vk (R) for 1 ≤ k ≤ 8 (say), show that the ‘volume’ of the totally symmetric solid of unit radius is a maximum in five dimensions. 6.6 Hints and answers 6.1 6.3 6.5 6.7 6.9 6.11 6.13 6.15 6.17 6.19 6.21 6.23 √ √ For integration order z, y, x, the limits are (0, √ a − x),√(− 4ax, 4ax) and (0, a). For integration order y, x, z, the limits are (− 4ax, 4ax), (0, a − z) and (0, a). V = 16a3 /15. 1/360. (a) Evaluate 2b[1 − (x/a)2 ]1/2 dx by setting x = a cos φ; (b) dV = π × a[1 − (z/c)2 ]1/2 × b[1 − (z/c)2 ]1/2 dz. Write sin3 θ as (1 − cos2 θ) sin θ when integrating |Ψ2 |2 . (a) V = 2πc × πa2 and A = 2πa × 2πc. Setting ro = c + a and ri = c − a gives the stated results. (b) Show that the centre of gravity of either half is 2a/π from the cylinder. Transform to cylindrical polar coordinates. 4πa2 ; 4πa3 /3; a sphere. The volume element is ρ dφ dρ dz. The integrand for the final z-integration is given by 2π[(z 2 ln z) − (z 2 /2)]; I = −5π/9. Set ξ = x/a, η = y/b, ζ = z/c to map the ellipsoid onto the unit sphere, and then change from (ξ, η, ζ) coordinates to spherical polar coordinates; I = 4πa3 bc/15. Set u = sinh x cos y and v = cosh x sin y; Jxy,uv = (sinh2 x + cos2 y)−1 and the integrand reduces to 4uv over the region 0 ≤ u ≤ 1, 0 ≤ v ≤ 1; I = 1. Terms such as T ∂2 S/∂Y ∂X cancel in pairs. Use equations (6.17) and (6.16). (c) Show that the two expressions mutually support the integration formula given for computing a volume in the next higher dimension. (d)(ii) 2, π, 4π/3, π 2 /2, 8π 2 /15, π 3 /6, 16π 3 /105, π 4 /24. 211