Comments
Description
Transcript
Scalars and vectors
7 Vector algebra This chapter introduces space vectors and their manipulation. Firstly we deal with the description and algebra of vectors, then we consider how vectors may be used to describe lines and planes and finally we look at the practical use of vectors in finding distances. Much use of vectors will be made in subsequent chapters; this chapter gives only some basic rules. 7.1 Scalars and vectors The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together with the units in which it is measured. Such a quantity is called a scalar and examples include temperature, time and density. A vector is a quantity that requires both a magnitude (≥ 0) and a direction in space to specify it completely; we may think of it as an arrow in space. A familiar example is force, which has a magnitude (strength) measured in newtons and a direction of application. The large number of vectors that are used to describe the physical world include velocity, displacement, momentum and electric field. Vectors are also used to describe quantities such as angular momentum and surface elements (a surface element has an area and a direction defined by the normal to its tangent plane); in such cases their definitions may seem somewhat arbitrary (though in fact they are standard) and not as physically intuitive as for vectors such as force. A vector is denoted by bold type, the convention of this book, or by underlining, the latter being much used in handwritten work. This chapter considers basic vector algebra and illustrates just how powerful vector analysis can be. All the techniques are presented for three-dimensional space but most can be readily extended to more dimensions. Throughout the book we will represent a vector in diagrams as a line together with an arrowhead. We will make no distinction between an arrowhead at the 212