Comments
Transcript
4 Chapter 4 Determinants and Eigenvalues
4 Determinants and Eigenvalues 4.1 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Determinants: Advanced Results . . . . . . . . . . . . . . . . . . . . . . 4.3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Luz M. DeAlba Drake University 4.1 4-1 4-3 4-6 4-11 Determinants Definitions: The determinant, det A, of a matrix A = [ai j ] ∈ F n×n is an element in F defined inductively: r det [a] = a. r For i, j ∈ {1, 2, . . . , n}, the i j th minor of A corresponding to a is defined by m = det A({i }, { j }). ij ij r The i j th cofactor of a is c = (−1)i + j m . ij ij ij r det A = n (−1)i + j a m = n a c for i ∈ {1, 2, . . . , n}. ij ij j =1 j =1 i j i j This method of computing the determinant of a matrix is called Laplace expansion of the determinant by minors along the i th row. The determinant of a linear operator T : V → V on a finite dimensional vector space, V , is defined as det(T ) = det ([T ]B ), where B is a basis for V . Facts: All matrices are assumed to be in F n×n , unless otherwise stated. All the following facts except those with a specific reference can be found in [Lay03, pp. 185–213] or [Goo03, pp. 167–193]. a a12 = a11 a22 − a12 a21 . 1. det 11 a21 a22 ⎡ 2. 3. 4. 5. 6. ⎤ a11 a12 a13 ⎢ ⎥ det A = det⎣a21 a22 a23 ⎦ = a11 a22 a33 + a21 a13 a32 + a31 a12 a23 − a31 a13 a22 − a21 a12 a33 a31 a32 a33 −a11 a32 a23 . The determinant is independent of the row i used to evaluate it. (Expansion of the determinant by minors along the j th column) Let j ∈ {1, 2, . . . , n}. Then det A = in=1 (−1)i + j ai j mi j = in=1 ai j c i j . det In = 1. If A is a triangular matrix, then det A = a11 a22 · · · ann . 4-1 4-2 Handbook of Linear Algebra 7. If B is a matrix obtained from A by interchanging two rows (or columns), then det B = − det A. 8. If B is a matrix obtained from A by multiplying one row (or column) by a nonzero constant r , then det B = r det A. 9. If B is a matrix obtained from A by adding to a row (or column) a multiple of another row (or column), then det B = det A. 10. If A, B, and C differ only in the r th row (or column), and the r th row (or column) of C is the sum of the r th rows (or columns) of A and B, then det C = det A + det B. 11. If A is a matrix with a row (or column) of zeros, then det A = 0. 12. If A is a matrix with two identical rows (or columns), then det A = 0. 13. Let B be a row echelon form of A obtained by Gaussian elimination, using k row interchange operations and adding multiples of one row to another (see Algorithm 1 in Section 1.3). Then det A = (−1)k det B = (−1)k b11 b22 · · · bnn . 14. det AT = det A. 15. If A ∈ Cn×n , then det A∗ = det A. 16. det AB = det A det B. 17. If c ∈ F , then det(c A) = c n det A. if and only if det A = 0. 18. A is nonsingular, that is A−1 exists, 19. If A is nonsingular, then det A−1 = det1 A . 20. If S is nonsingular, then det S −1 AS = det A. 21. [HJ85] det A = σ sgnσ a1σ (1) a2σ (2) · · · anσ (n) , where summation is over the n! permutations, σ , of the n indices {1, 2, . . . , n}. The weight “sgnσ ” is 1 when σ is even and −1 when σ is odd. (See Preliminaries for more information on permutations.) 22. If x, y ∈ F n , then det(I + xyT ) = 1 + yT x. 23. [FIS89] Let T be a linear operator on a finite dimensional vector space V . Let B and B be bases for V . Then det(T ) = det ([T ]B ) = det ([T ]B ). 24. [FIS89] Let T be a linear operator on a finite dimensional vector space V . Then T is invertible if and only if det(T ) = 0. 25. [FIS89] Let T be an invertible linear operator on a finite dimensional vector space V . Then 1 . det(T −1 ) = det(T ) 26. [FIS89] Let T and U be linear operators on a finite dimensional vector space V . Then det(TU ) = det(T ) · det(U ). Examples: ⎡ 3 −2 ⎢ 1. Let A = ⎣ 2 5 −3 1 2 · det ⎤ 4 ⎥ −6⎦. Expanding the determinant of A along the second column: det A = 5 2 −6 3 + 5 · det −3 5 −3 ⎡ −1 3 −2 5 8 −4 0 0 3 1 ⎢ ⎢ 2 2. Let A = ⎢ ⎣ 7 ⎡ ⎤ 4 3 − det 5 2 ⎤ 4 = 2 · (−8) + 5 · 27 + 26 = 145. −6 4 1⎥ ⎥ ⎥. Expanding the determinant of A along the third row: det A = −6⎦ 5 ⎡ ⎤ ⎡ 3 −2 4 −1 −2 4 −1 ⎢ ⎥ ⎢ ⎥ ⎢ 7 · det ⎣5 8 1⎦ + 4 · det ⎣ 2 8 1⎦ + 6 · det ⎣ 2 3 1 5 0 1 5 0 3. Let T : R2 → R2 defined by T det x1 x2 2 −3 = 15. Now let B = 1 6 = 3 5 3 2x1 − 3x2 . With B = x1 + 6x2 1 1 , 1 0 ⎤ −2 ⎥ 8⎦ = 557. 1 1 0 , 0 1 . Then det ([T ]B ) = det 7 −8 , then det ([T ]B ) = 1 = 15. 1 4-3 Determinants and Eigenvalues Applications: 1. (Cramer’s Rule) If A ∈ F n×n is nonsingular, then the equation Ax = b, where x, b ∈ F n , has the ⎡ ⎤ s1 ⎢s ⎥ ⎢ 2⎥ ⎥ unique solution s = ⎢ ⎢ .. ⎥, where s i = ⎣.⎦ det Ai det A and Ai is the matrix obtained from A by replacing sn the i th column with b. ⎡ ⎤ 1 ··· 1 ⎢ x2 · · · xn ⎥ ⎢ ⎥ ⎢ x22 · · · xn2 ⎥ ⎥= 2. [Mey00, p. 486] (Vandermonde Determinant) det ⎢ 1≤i < j ≤n (xi − x j ). ⎢ ⎥ . . .. ⎢ ⎥ . . ⎣ . . ⎦ . x1n−1 x2n−1 · · · xnn−1 3. [FB90, pp. 220–235] (Volume) Let a1 , a2 , . . . , an be linearly independent vectors in Rm . The volume, V , of the n-dimensional solid in Rm , defined by S = { in=1 ti ai , 0 ≤ ti ≤ 1, i = 1, 2, . . . , n}, is 1 x1 x12 .. . given by V = det AT A , where A is the matrix whose i th column is the vector ai . Let m ≥ n and T : Rn → Rm be a linear transformation whose standard matrix representation is the m × n matrix A. Let S be a region in Rn of volume VS . Then the volume of the image of S under the transformation T is VT (S) = det AT A · VS . 4. [Uhl02, pp. 247–248] (Wronskian) Let f 1 , f 2 , . . . , f n be n − 1 times differentiable functions of the real variable x. The determinant ⎡ f 1 (x) ⎢ f (x) ⎢ 1 W( f 1 , f 2 , . . . , f n )(x) = det ⎢ .. ⎢ ⎣ . (n−1) f1 (x) f 2 (x) ··· f 2 (x) ··· .. .. . . (n−1) f2 (x) · · · f n (x) f n (x) .. . (n−1) fn (x) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ is called the Wronskian of f 1 , f 2 , . . . , f n . If W( f 1 , f 2 , . . . , f n )(x) = 0 for some x ∈ R, then the functions f 1 , f 2 , . . . , f n are linearly independent. 4.2 Determinants: Advanced Results Definitions: A principal minor is the determinant of a principal submatrix. (See Section 1.2.) A leading principal minor is the determinant of a leading principal submatrix. The sum of all the k × k principal minors of A is denoted Sk (A). m n × matrix C k (A) whose entries are the k × k The kth compound matrix of A ∈ F m×n is the k k minors of A, usually in lexicographical order. T The adjugate of A ∈ F n×n is the matrix adj A = c j i = c i j , where c i j is the i j th-cofactor. n n × matrix adj (k) A, whose a j i entry is the cofactor, k k in A, of the (n − k)th minor, of A, in the i j th position of the compound. Let α ⊆ {1, 2, . . . , n} and A ∈ F n×n with A[α] nonsingular. The matrix The kth adjugate of A ∈ F n×n is the A/A[α] = A[α c ] − A[α c , α]A[α]−1 A[α, α c ] is called the Schur complement of A[α]. 4-4 Handbook of Linear Algebra Facts: All matrices are assumed to be in F n×n , unless otherwise stated. All the following facts except those with a specific reference can be found in [Lay03, pp. 185–213] or [Goo03, pp. 167–193]. 1. A (adj A) = (adj A) A = (det A) In . 2. det (adj A) = (det A)n−1 . 3. If det A = 0, then adj A is nonsingular, and (adj A)−1 = (det A)−1 A. ⎡ a11 ⎢a ⎢ 21 ⎢a 31 4. [Ait56] (Method of Condensation) Let A = ⎢ ⎢ . ⎢ . ⎣ . an1 a12 a22 a32 .. . an2 a13 a23 a33 .. . an3 ⎤ · · · a1n · · · a2n ⎥ ⎥ · · · a3n ⎥ ⎥, and assume without .. ⎥ .. ⎥ . . ⎦ · · · ann loss of generality that a11 = 0, otherwise a nonzero element can be brought to the (1, 1) position by interchanging two rows, which will change the sign of the determinant. Multiply all the rows of A except the first by a11 . For i = 2, 3, . . . , n, perform the row operations: replace row i with row i −ai 1 · ⎡ a11 ⎢ 0 ⎢ ⎢ 0 n−1 det A = det ⎢ row 1. Thus a11 ⎢ . ⎢ . ⎣ . 0 ⎡ a11 ⎢ det a21 ⎢ So, det A = 1 n−2 a11 ⎢ ⎢ ⎢ ⎢ det a 11 ⎢ a31 · det ⎢ ⎢ .. ⎢ ⎢ . ⎢ ⎢ ⎢ a11 ⎣ det an1 a12 a22 a12 a32 a12 an2 a12 a11 a22 − a21 a12 a11 a32 − a31 a12 .. . a11 an2 − an1 a12 a det 11 a21 a13 a23 a11 a31 .. . a13 a33 a det 11 an1 a12 an3 det a13 a11 a23 − a21 a13 a11 a33 − a31 a13 .. . a11 an3 − an1 a12 ··· a det 11 a21 a1n a2n a11 a31 .. . a1n a32 a det 11 an1 a1n ann ··· .. det . ··· ⎤ ··· a1n · · · a11 a2n − a21 a1n ⎥ ⎥ · · · a11 a3n − a31 a1n ⎥ ⎥. ⎥ .. .. ⎥ ⎦ . . · · · a11 ann − an1 a1n ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥. ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 5. [Ait56] A(k) (adj (k) A) = (adj (k) A)A(k) = (det A)In . (k) n−1 6. [Ait56] det A = det (Ar ), where r = . k−1 7. [Ait56] det A(n−k) = det(adj (k) A). 8. [HJ85] If A ∈ F n×n , B ∈ F m×m , then det (A B) = (det A)m (det B)n . (See Section 10.5 for the definition of A B.) 9. [Uhl02] For A ∈ F n×n , det A is the unique normalized, alternating, and multilinear function d : F n×n → F . That is, d(In ) = 1, d(A) = −d(A ), where A denotes the matrix obtained from A, by interchanging two rows, and d is linear in each row of A, if the remaining rows of A are held fixed. 10. [HJ85] (Cauchy–Binet) Let A ∈ F n×k , B ∈ F k×n , and C = AB. Then det C [α, β] = det A[α, γ ] det B[γ , β], γ where α ⊆ {1, 2, . . . , m}, β ⊆ {1, 2, . . . , n}, with |α| = |β| = r , 1 ≤ r ≤ min{m, k, n}, and the sum is taken over all sets γ ⊆ {1, 2, . . . , k} with |γ | = r . 11. [HJ85] (Schur Complement). Let A[α] be nonsingular. Then det A = det A[α] det A[α c ] − A [α c , α] A[α]−1 A [α, α c ] . 4-5 Determinants and Eigenvalues 12. [HJ85] (Jacobi’s Theorem) Let A be nonsingular and let α, β ⊆ {1, 2, . . . , n}, with |α| = |β|. Then det A−1 [α c , β c ] = (−1)( i ∈α i+ j ∈β A[β, α] . det A j ) det In particular, if α = β. Then det A−1 [α c ] = detdetA[α] . A 13. [HJ85] (Sylvester’s Identity) Let α ⊆ {1, 2, . . . , n} with |α| = k, and i, j ∈ {1, 2, . . . , n}, with i, j ∈ / α. For A ∈ F n×n , let B = [bi j ] ∈ F (n−k)×(n−k) be defined by bi j = det A [α ∪ {i } , α ∪ { j }]. Then det B = (det A[α])n−k−1 det A. Examples: ⎡ 1 ⎢ ⎢0 1. Let A = ⎢ ⎣0 0 1 1 0 −1 ⎤ ⎡ 0 1 ⎥ 1⎥ ⎢ ⎥. S3 (A) = 23 because det A[{1, 2, 3}] = det⎣0 2⎦ 0 −4 0 0 −3 −2 ⎡ 1 ⎢ det A[{1, 2, 4}] = det ⎣0 0 ⎤ 1 1 −1 ⎡ ⎡ 0 1 0 ⎥ ⎢ 1⎦ = −3, det A[{1, 3, 4}] = det⎣0 −3 0 −2 −4 ⎤ 1 0 ⎢ det A[{2, 3, 4}] = det ⎣ 0 −3 −1 −2 ⎤ 1 1 0 0 ⎥ 0⎦ = −3, −3 ⎤ 0 ⎥ 2⎦ = 16, and −4 1 ⎥ 2⎦ = 13. From the Laplace expansion on the first column −4 and det A[{2, 3, 4}] = 13, it follows that S4 (A) = det A = 13. Clearly, S1 (A) = tr A = −5. ⎡ 1 ⎢ ⎢1 2. (kth compound) Let A = ⎢ ⎣1 1 and det (C 2 (A)) = 729. ⎡ −1 ⎢ ⎢ 2 3. (Cauchy–Binet) Let A = ⎢ ⎣ i 0 1 0 1 4 1 1 0 0 ⎡ −1 ⎢ 0 1 ⎢ ⎢ 4⎥ ⎥ ⎢ 3 ⎥. Then det A = 9, C 2 (A) = ⎢ ⎢ 1 1⎦ ⎢ ⎣ 4 1 3 ⎤ 0 3 −1 0 −1 0 −1 −3 −1 −3 0 0 1 4 −1 0 −4 −3 −1 −4 −4 −16 0 −3 ⎤ ⎡ ⎤ 3 −1 3 2 −3 0 0 0⎥ ⎢ ⎥ ⎥ 4 3i ⎦, and C = AB. ⎥, B = ⎣0 −4 −4 0⎦ 7 −6i 5 4 1+i 1 Then det C [{2, 4}, {2, 3}] = det A[{2, 4}, {1, 2}] det B[{1, 2}, {2, 3}] + det A[{2, 4}, {1, 3}] det B[{1, 3}, {2, 3}] + det A[{2, 4}, {2, 3}] det B[{2, 3}, {2, 3}] = 12 − 44i . a 4. (Schur Complement) Let A = b b∗ , where a ∈ C, b ∈ Cn−1 , and C ∈ C(n−1)×(n−1) . If C is C nonsingular, then det A = (a − b∗ C −1 b) det C . If a = 0, then det A = a det C − a1 bb∗ . ⎡ ⎤ 1 −2 0 ⎢ ⎥ 5. (Jacobi’s Theorem) Let A = ⎣ 3 4 0⎦ and α = {2} = β. By Jacobi’s formula, det A−1 (2) = −1 0 5 ⎡ det A[2] det A = −1 4 50 = 2 . This can be readily verified by computing 25 det A [{1, 3}] = 2 . 25 A−1 = 2 ⎢ 35 ⎢− ⎣ 10 2 25 1 5 1 10 1 25 0 ⎤ ⎥ 0⎥ ⎦, and verifying 1 5 ⎤ 3 1⎥ ⎥ 1⎥ ⎥ ⎥, 1⎥ ⎥ 1⎦ 0 4-6 Handbook of Linear Algebra ⎡ −7 i ⎢ 6. (Sylvester’s Identity) Let A = ⎣ −i −2 −3 1 − 4i ⎤ −3 ⎥ 1 + 4i ⎦ and α = {1}. Define B ∈ C2×2 , with entries 5 b11 = det A[{1, 2}] = 13, b12 = det A[{1, 2}, {1, 3}] = −7 − 31i , b21 = det A[{1, 3}, {1, 2}] = −7 + 31i , b22 = det A[{1, 3}] = −44. Then −1582 = det B = (det A[{1}]) det A = (−7) det A, so det A = 226. 4.3 Eigenvalues and Eigenvectors Definitions: An element λ ∈ F is an eigenvalue of a matrix A ∈ F n×n if there exists a nonzero vector x ∈ F n such that Ax = λx. The vector x is said to be an eigenvector of A corresponding to the eigenvalue λ. A nonzero row vector y is a left eigenvector of A, corresponding to the eigenvalue λ, if yA = λy. For A ∈ F n×n , the characteristic polynomial of A is given by p A (x) = det(x I − A). The algebraic multiplicity, α(λ), of λ ∈ σ (A) is the number of times the eigenvalue occurs as a root in the characteristic polynomial of A. The spectrum of A ∈ F n×n , σ (A), is the multiset of all eigenvalues of A, with eigenvalue λ appearing α(λ) times in σ (A). The spectral radius of A ∈ Cn×n is ρ(A) = max{|λ| : λ ∈ σ (A)}. Let p(x) = c n x n + c n−1 x n−1 + · · · + c 2 x 2 + c 1 x + c 0 be a polynomial with coefficients in F . Then p(A) = c n An + c n−1 An−1 + · · · + c 2 A2 + c 1 A + c 0 I . For A ∈ F n×n , the minimal polynomial of A, q A (x), is the unique monic polynomial of least degree for which q A (A) = 0. The vector space ker(A − λI ), for λ ∈ σ (A), is the eigenspace of A ∈ F n×n corresponding to λ, and is denoted by E λ (A). The geometric multiplicity, γ (λ), of an eigenvalue λ is the dimension of the eigenspace E λ (A). An eigenvalue λ is simple if α(λ) = 1. An eigenvalue λ is semisimple if α(λ) = γ (λ). For K = C or any other algebraically closed field, a matrix A ∈ K n×n is nonderogatory if γ (λ) = 1 for all λ ∈ σ (A), otherwise A is derogatory. Over an arbitrary field F , a matrix is nonderogatory (derogatory) if it is nonderogatory (derogatory) over the algebraic closure of F . For K = C or any other algebraically closed field, a matrix A ∈ K n×n is nondefective if every eigenvalue of A is semisimple, otherwise A is defective. Over an arbitrary field F , a matrix is nondefective (defective) if it is nondefective (defective) over the algebraic closure of F . A matrix A ∈ F n×n is diagonalizable if there exists a nonsingular matrix B ∈ F n×n , such that A = B D B −1 for some diagonal matrix D ∈ F n×n . For a monic polynomial p(x) = x n + c n−1 x n−1⎤+ · · · + c 2 x 2 + c 1 x + c 0 with coefficients in F , the ⎡ 0 0 0 · · · 0 −c 0 ⎢1 0 0 · · · 0 −c 1 ⎥ ⎢ ⎥ ⎢0 1 0 · · · 0 −c 2 ⎥ ⎥ is called the companion matrix of p(x). n × n matrix C ( p) = ⎢ ⎢. . . .. ⎥ .. ⎢. . . .. ⎥ ⎣. . . . . . ⎦ 0 0 0 · · · 1 −c n−1 Let T be a linear operator on a finite dimensional vector space, V , over a field F . An element λ ∈ F is an eigenvalue of T if there exists a nonzero vector v ∈ V such that T (v) = λv. The vector v is said to be an eigenvector of T corresponding to the eigenvalue λ. For a linear operator, T , on a finite dimensional vector space, V , with a basis, B, the characteristic polynomial of T is given by p T (x) = det([T ])B . A linear operator T on a finite dimensional vector space, V , is diagonalizable if there exists a basis, B, for V such that [T ]B is diagonalizable. Determinants and Eigenvalues 4-7 Facts: These facts are grouped into the following categories: Eigenvalues and Eigenvectors, Diagonalization, Polynomials, Other Facts. All matrices are assumed to be in F n×n unless otherwise stated. All the following facts, except those with a specific reference, can be found in [Mey00, pp. 489–660] or [Lay03, pp. 301–342]. Eigenvalues and Eigenvectors 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. λ ∈ σ (A) if and only if p A (λ) = 0. For each eigenvalue λ of a matrix A, 1 ≤ γ (λ) ≤ α(λ). A simple eigenvalue is semisimple. For any F , |σ (A)| ≤ n. If F = C or any algebraically closed field, then |σ (A)| = n. If F = C or any algebraically closed field, then det A = in=1 λi , λi ∈ σ (A). n If F = C or any algebraically closed field, then tr A = i =1 λi , λi ∈ σ (A). For A ∈ Cn×n , λ ∈ σ (A) if and only if λ̄ ∈ σ (A∗ ). For A ∈ Rn×n , viewing A ∈ Cn×n , λ ∈ σ (A) if and only if λ̄ ∈ σ (A). If A ∈ Cn×n is Hermitian (e.g., A ∈ Rn×n is symmetric), then A has real eigenvalues and A can be diagonalized. (See also Section 7.2.) A and AT have the same eigenvalues with same algebraic multiplicities. If A = [ai j ] is triangular, then σ (A) = {a11 , a22 , . . . , ann }. If A has all row (column) sums equal to r , then r is an eigenvalue of A. A is singular if and only if det A = 0, if and only if 0 ∈ σ (A). If A is nonsingular and λ is an eigenvalue of A of algebraic multiplicity α(λ), with corresponding eigenvector x, then λ−1 is an eigenvalue of A−1 with algebraic multiplicity α(λ) and corresponding eigenvector x. Let λ1 , λ2 , . . . , λs be distinct eigenvalues of A. For each i = 1, 2, . . . , s let xi 1 , xi 2 , . . . , xir i be linearly independent eigenvectors corresponding to λi . Then the vectors x11 , . . . , x1r 1 , x21 , . . . , x2r 2 , . . . , xs 1 , . . . , xs r s are linearly independent. [FIS89] Let T be a a linear operator on a finite dimensional vector space over a field F , with basis B. Then λ ∈ F is an eigenvalue of T if and only if λ is an eigenvalue of [T ]B . [FIS89] Let λ1 , λ2 , . . . , λs be distinct eigenvalues of the linear operator T , on a finite dimensional space V . For each i = 1, 2, . . . , s let xi 1 , xi 2 , . . . , xir i be linearly independent eigenvectors corresponding to λi . Then the vectors x11 , . . . , x1r 1 , x21 , . . . , x2r 2 , . . . , xs 1 , . . . , xs r s are linearly independent. Let T be linear operator on a finite dimensional vector space V over a field F . Then λ ∈ F is an eigenvalue of T if and only if p T (λ) = 0. Diagonalization 19. [Lew91, pp. 135–136] Let λ1 , λ2 , . . . , λs be distinct eigenvalues of A. If A ∈ Cn×n , then A is diagonalizable if and only if α(λi ) = γ (λi ) for i = 1, 2, . . . , s . If A ∈ Rn×n , then A is diagonalizable by a nonsingular matrix B ∈ Rn×n if and only if all the eigenvalues of A are real and α(λi ) = γ (λi ) for i = 1, 2, . . . , s . 20. Method for Diagonalization of A over C: This is a theoretical method using exact arithmetic and is undesirable in decimal arithmetic with rounding errors. See Chapter 43 for information on appropriate numerical methods. r Find the eigenvalues of A. r Find a basis x , . . . , x for E (A) for each of the distinct eigenvalues λ , . . . , λ of A. i1 ir i λi 1 k r If r +· · ·+r = n, then let B = [x . . . x . . .x . . .x ]. B is invertible and D = B −1 AB is a 1 k 11 1r 1 k1 kr k diagonal matrix, whose diagonal entries are the eigenvalues of A, in the order that corresponds to the order of the columns of B. Else A is not diagonalizable. 21. A is diagonalizable if and only if A has n linearly independent eigenvectors. 4-8 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. Handbook of Linear Algebra A is diagonalizable if and only if |σ (A)| = n and A is nondefective. If A has n distinct eigenvalues, then A is diagonalizable. A is diagonalizable if and only if q A (x) can be factored into distinct linear factors. If A is diagonalizable, then so are AT , Ak , k ∈ N. If A is nonsingular and diagonalizable, then A−1 is diagonalizable. If A is an idempotent, then A is diagonalizable and σ (A) ⊆ {0, 1}. If A is nilpotent, then σ (A) = {0}. If A is nilpotent and is not the zero matrix, then A is not diagonalizable. [FIS89] Let T be a linear operator on a finite dimensional vector space V with a basis B. Then T is diagonalizable if and only if [T ]B is diagonalizable. [FIS89] A linear operator, T , on a finite dimensional vector space V is diagonalizable if and only if there exists a basis B = {v1 , . . . , vn } for V , and scalars λ1 , . . . , λn , such that T (vi ) = λi vi , for 1 ≤ i ≤ n. [FIS89] If a linear operator, T , on a vector space, V , of dimension n, has n distinct eigenvalues, then it is diagonalizable. [FIS89] The characteristic polynomial of a diagonalizable linear operator on a finite dimensional vector space can be factored into linear terms. Polynomials 33. [HJ85] (Cayley–Hamilton Theorem) Let p A (x) = x n + an−1 x n−1 + · · · + a1 x + a0 be the characteristic polynomial of A. Then p A (A) = An + an−1 An−1 + · · · + a1 A + a0 In = 0. 34. [FIS89] (Cayley–Hamilton Theorem for a Linear Operator) Let p T (x) = x n + an−1 x n−1 + · · · + a1 x + a0 be the characteristic polynomial of a linear operator, T , on a finite dimensional vector space, V . Then p T (T ) = T n + an−1 T n−1 + · · · + a1 T + a0 In = T0 , where T0 is the zero linear operator on V . 35. p AT (x) = p A (x). 36. The minimal polynomial q A (x) of a matrix A is a factor of the characteristic polynomial p A (x) of A. 37. If λ is an eigenvalue of A associated with the eigenvector x, then p(λ) is an eigenvalue of the matrix p(A) associated with the eigenvector x, where p(x) is a polynomial with coefficients in F . 38. If B is nonsingular, p A (x) = p B −1 AB (x), therefore, A and B −1 AB have the same eigenvalues. 39. Let p A (x) = x n + an−1 x n−1 + · · · + a1 x + a0 be the characteristic polynomial of A. If |σ (A)| = n, then ak = (−1)n−k Sn−k (λ1 , . . . , λn ), k = 0, 1, . . . , n − 1, where Sk (λ1 , . . . , λn ) is the kth symmetric function of the eigenvalues of A. 40. Let p A (x) = x n + an−1 x n−1 + · · · + a1 x + a0 be the characteristic polynomial of A. Then ak = (−1)n−k Sn−k (A), k = 0, 1, . . . , n − 1. 41. If |σ (A)| = n, then Sk (A) = Sk (λ1 , . . . , λn ). 42. If C ( p) is the companion matrix of the polynomial p(x), then p(x) = pC ( p) (x) = q C ( p) (x). 43. [HJ85, p. 135] If |σ (A)| = n, A is nonderogatory, and B commutes with A, then there exists a polynomial f (x) of degree less than n such that B = f (A). Other Facts: 44. If A is nonsingular and λ is an eigenvalue of A of algebraic multiplicity α(λ), with corresponding eigenvector x, then det( A)λ−1 is an eigenvalue of adj A with algebraic multiplicity α(λ) and corresponding eigenvector x. 45. [Lew91] If λ ∈ σ (A), then any nonzero column of adj ( A−λI ) is an eigenvector of A corresponding to λ. 46. If AB = B A, then A and B have a common eigenvector. 47. If A ∈ F m×n and B ∈ F n×m , then σ (AB) = σ (B A) except for the zero eigenvalues. 4-9 Determinants and Eigenvalues 48. If A ∈ F m×m and B ∈ F n×n , λ ∈ σ (A), µ ∈ σ (B), with corresponding eigenvectors u and v, respectively, then λµ ∈ σ (A B), with corresponding eigenvector u v. (See Section 10.5 for the definition of A B.) Examples: 0 −1 1. Let A = . Then, viewing A ∈ Cn×n , σ (A) = {−i, i }. That is, A has no eigenvalues over 1 0 the reals. ⎡ ⎤ −3 ⎢ 2. Let A = ⎣ 6 72 7 −1 ⎥ 8 −2⎦. Then p A (x) = (x + 6)(x − 15)2 = q A (x), λ1 = −6, α(λ1 ) = 1, −28 19 γ (λ1 ) = 1, λ2 = 15, α(λ2 ) = 2, γ (λ2 ) = 1. Also, a set of linearly independent eigenvectors is ⎧ ⎡ ⎤ ⎡ ⎤⎫ ⎪ −1 ⎪ ⎨ −1 ⎬ ⎢ ⎥ ⎢ ⎥ ⎣−2⎦ , ⎣ 1⎦ . So, A is not diagonalizable. ⎪ ⎪ ⎩ 4 4 ⎭ ⎡ ⎤ 57 ⎢ 3. Let A = ⎣ −14 −140 −21 21 ⎥ 22 −7⎦. Then p A (x) = (x + 6)(x − 15)2 , q A (x) = (x + 6)(x − 15), 70 −55 λ1 = −6, α(λ1 ) = 1, γ (λ1 ) = 1, λ2 = 15, α(λ2 ) = 2, γ (λ2 ) = 2. Also, a set of linearly ⎧ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎫ ⎪ 1 −3 ⎪ ⎨ −1 ⎬ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ independent eigenvectors is ⎣ 0⎦ , ⎣2⎦ , ⎣ 1⎦ . So, A is diagonalizable. ⎪ ⎪ ⎩ 2 0 10 ⎭ ⎡ ⎤ −5 + 4i ⎢ 4. Let A = ⎣ 2 + 8i 20 − 4i 1 i ⎥ −4 2i ⎦. Then σ (A) = {−6, −3, 3i }. If B = −4 −i σ (B) = {−12, −9, −5 + 6i }. ⎡ ⎤ ⎡ 1 9 A2 + 2A − 4I , then ⎤ −2 1 0 −2 1 0 ⎢ ⎥ ⎢ ⎥ 5. Let A = ⎣ 0 −3i 0⎦ and B = ⎣ 3 −1 1⎦. B is nonsingular, so A and B −1 AB = 0 0 1 4 0 1 ⎡ −1 + 3i ⎢ ⎣ 5 + 6i 8 − 12i 1−i −1 − 2i −4 + 4i 6. Let A = ⎤ i ⎥ 1 + 2i ⎦ have the same eigenvalues, which are given in the diagonal of A. 1 − 4i 2 −1 0 0 3 1 ⎡ and B = ⎡ 3 ⎢ ⎣2 1 ⎤ 0 ⎥ 1⎦. Then AB 0 = 4 −1 , σ (AB) 7 3 = ⎤ 6 −3 0 √ √ √ ⎢ ⎥ 1 1 (7 + 3 3i ), (7 − 3 3i ) , B A = 4 1 1⎦, and σ (B A) = 12 (7 + 3 3i ), 12 (7 − 3 3i ), 0 . ⎣ 2 2 2 −1 0 √ ⎡ 1 ⎢ 7. Let A = ⎣0 0 1 1 0 ⎤ ⎡ ⎤ ⎡ ⎤ 0 −2 7 0 −2 5 0 ⎥ ⎢ ⎥ ⎢ ⎥ 0⎦ and B = ⎣ 0 −2 0⎦. Then AB = B A = ⎣ 0 −2 0⎦. A and B −3i 0 0 i 0 0 3 ⎡ ⎤ 1 ⎢ ⎥ share the eigenvector x = ⎣0⎦, corresponding to the eigenvalues λ = 1 of A and µ = −2 of B. 0 4-10 Handbook of Linear Algebra ⎡ 1 ⎢ ⎢0 8. Let A = ⎢ ⎣0 0 1 1 0 −1 0 0 −3 −2 ⎤ 0 1⎥ ⎥ ⎥. Then p A (x) = x 4 +5x 3 +4x 2 −23x +13. S4 (A), S3 (A), and S1 (A) 2⎦ −4 were computed in Example 1 of Section 4.2, and it is straightforward to verify that S2 (A) = 4. Comparing these values to the characteristic polynomial, S4 (A) = 13 = (−1)4 13, S3 (A) = 23 = (−1)3 (−23), S2 (A) = (−1)2 4, and S1 (A) = (−1)(5). It follows that S4 (λ1 , λ2 , λ3 , λ4 ) = λ1 λ2 λ3 λ4 = 13, S3 (λ1 , λ2 , λ3 , λ4 ) = 23, S2 (λ1 , λ2 , λ3 , λ4 ) = 4, and S1 (λ1 , λ2 , λ3 , λ4 ) = λ1 + λ2 + λ3 + λ4 = −5 (these values can also be verified with a computer algebra system or numerical software). ⎡ ⎤ 0 0 −2 ⎢ ⎥ 9. Let p(x) = x 3 − 7x 2 − 3x + 2, C = C ( p) = ⎣1 0 3⎦. Then pC (x) = x 3 − 7x 2 − 3x + 2 = 0 1 7 ⎡ ⎤ ⎡ −2 −14 −104 0 ⎢ ⎥ ⎢ p(x). Also, pC (C ) = −C 3 + 7C 2 + 3C − 2I = − ⎣ 3 19 142⎦ + 7 ⎣0 7 52 383 1 ⎡ 0 ⎢ + 3 ⎣1 0 0 0 1 ⎤ ⎡ −2 1 ⎥ ⎢ 3⎦ − 2 ⎣ 0 7 0 0 1 0 ⎤ ⎡ 0 0 ⎥ ⎢ 0⎦ = ⎣ 0 1 0 0 0 0 ⎤ −2 −14 ⎥ 3 19⎦ 7 52 ⎤ 0 ⎥ 0 ⎦. 0 Applications: 1. (Markov Chains) (See also Chapter 54 for more information.) A Markov Chain describes a process in which a system can be in any one of n states: s 1 , s 2 , . . . , s n . The probability of entering state s i depends only on the state previously occupied by the system. The transition probability of entering state j , given that the system is in state i , is denoted by pi j . The transition matrix is the matrix P = [ pi j ]; its rows have sum 1. A (row or column) vector is a probability vector if its entries are nonnegative and sum to 1. The probabilty row vector π (k) = (π1(k) , π2(k) , . . . πn(k) ), k ≥ 0, is called the state vector of the system at time k if its i th entry is the probability that the system is in state s i at time k. In particular, when k = 0, the state vector is called the initial state vector and its i th entry is the probability that the system begins at state s i . It follows from probability theory that π (k+1) = π (k) P , and thus inductively then P is said⎤to be that π (k) = π (0) P k . If the entries of some power of P are all positive, ⎡ π1 π2 · · · πn ⎢π π · · · π ⎥ 2 n⎥ ⎢ 1 n regular. If P is a regular transition matrix, then as n → ∞, P → ⎢ .. . . .. ⎥ ⎢ .. ⎥. The . ⎣ . . . ⎦ π1 π2 · · · πn row vector π = (π1 , π2 , . . . , πn ) is called the steady state vector, π is a probability vector, and as n → ∞, π (n) → π. The vector π is the unique probability row vector with the property that π P = π. That is, π is the unique probability row vector that is a left eigenvector of P for eigenvalue 1. 2. (Differential Equations) [Mey00, pp. 541–546] Consider the system of linear differential equations ⎧ x1 = a11 x1 + a12 x2 + . . . + a1n xn ⎪ ⎪ ⎪ ⎪ ⎨ x2 = a 21 x1 + a 22 x2 + . . . + a 2n xn .. , where each of the unknowns x1 , x2 , . . . , xn .. .. .. ⎪ ⎪ . . . . ⎪ ⎪ ⎩ xn = an1 x1 + an2 x2 + . . . + ann xn 4-11 Determinants and Eigenvalues is a differentiable function of the real variable t. This system of linear differential equations can ⎡ ⎤ ⎡ ⎤ x1 (t) x1 (t) ⎢ x (t) ⎥ ⎢ x (t) ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎥ ⎢ ⎥ be written in matrix form as x = Ax, where A = [ai j ], x = ⎢ ⎢ .. ⎥, and x = ⎢ .. ⎥. If A ⎣ . ⎦ ⎣ . ⎦ xn (t) xn (t) is diagonalizable, there exists a nonsingular matrix B (the columns of the matrix B are linearly independent eigenvectors of A), such that B −1 AB = D is a diagonal matrix, so x = B D B −1 x, or B −1 x = D B −1 x. Let u = B −1 x. The linear system of differential equations u = Du has solution ⎡ ⎤ k1 e λ1 t ⎢ k e λ2 t ⎥ ⎢ 2 ⎥ ⎥ u = ⎢ ⎢ .. ⎥, where λ1 , λ2 , . . . , λn are the eigenvalues of A. It follows that x = Bu. (See also ⎣ . ⎦ kn e λn t Chapter 55.) 3. (Dynamical Systems) [Lay03, pp. 315–316] Consider the dynamical system given by uk+1 = Auk , ⎡ ⎤ a1 ⎢a ⎥ ⎢ 2⎥ ⎥ where A = [ai j ], u0 = ⎢ ⎢ .. ⎥. If A is diagonalizable, there exist n linearly independent eigenvectors, ⎣.⎦ an x1 , x2 , . . . , xn , of A. The vector u0 can then be written as a linear combination of the eigenvectors, that is, u0 = c 1 x1 + c 2 x2 + · · · + c n xn . Then u1 = Au0 = A (c 1 x1 + c 2 x2 + · · · + c n xn ) = k+1 k+1 c 1 λ1 x1 + c 2 λ2 x2 + · · · + c n λn xn . Inductively, uk+1 = Auk = c 1 λk+1 1 x1 + c 2 λ2 x2 + · · · + c n λn xn . Thus, the long-term behavior of the dynamical system can be studied using the eigenvalues of the matrix A. (See also Chapter 56.) References [Ait56] A. C. Aitken. Determinants and Matrices, 9th ed. Oliver and Boyd, Edinburgh, 1956. [FB90] J. B. Fraleigh and R. A. Beauregard. Linear Algebra, 2nd ed. Addison-Wesley, Reading, PA, 1990. [FIS89] S. H. Friedberg, A. J. Insel, and L. E. Spence. Linear Algebra, 2nd ed. Prentice Hall, Upper Saddle River, NJ, 1989. [Goo03] E. G. Goodaire. Linear Algebra a Pure and Applied First Course. Prentice Hall, Upper Saddle River, NJ, 2003. [HJ85] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985. [Lay03] D. C. Lay. Linear Algebra and Its Applications, 3rd ed. Addison-Wesley, Boston, 2003. [Lew91] D. W. Lewis. Matrix Theory. Word Scientific, Singapore, 1991. [Mey00] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, 2000. [Uhl02] F. Uhlig. Transform Linear Algebra. Prentice Hall, Upper Saddle River, NJ, 2002.