Comments
Description
Transcript
くさびモデルに基づくタッピンねじ締結プロセスに関する研究 び
Wedge Model for Controlling Torque in Tapping Screw Fastening 47 Atsushi Yoshioka , 1. , ( . ) , Fig.1(b) . . (d) , , . Fig.1 . . (a) , , , , ,2 3 . 1 , . , , (c) 3 , , , , . . . , , . (a) (b) (c) Thrust Force Fth Tapping Screw Near Plate , , .Tightening , . Driving Torque TD Driver Bit , , Tapping 2.Tapping 2.1 Fig.3 . Tapping Tightening Tap Plate , Z R , ,R 90[deg] θ (d) . 2α Tapping 2α . β p , , . Tapping Fig.1 Technological requirements and research focus of tapping screw fastening (a) , . . , , , Fig.2 . , , . . , , . Fig.2 Nominal diameter of screw d1 , Length of actual ( ), ( ) Rotation speed . tapered screw y R θ tap plate t Z θ Diameter of Tap plate Z Cross-Section Thickness of Tightening Driving torque [N mm] Pre Tightening Lead angle β Tapered screw Length of Rotation speed [rpm] Driving torque Thread angle 2α swaging part ytap ( ), Pre Tightening Tightening Tapping Screw thread Cylindrical screw , Tapping β screw end d4 R Tap hole diameter Dh Fig.3 Definition of geometrical parameters of tapping screw 2.2 Angle of rotation [rad] , Fig.4 , . Engaging Tapping Pre Tightening Tightening Fig.2 Driving torque under controlled rotation speed in tapping screw fastening cycle Fig.2 .Tapping (a) ,Tightening , , . ,Tightening (1) . (Fig.4(a)). (Fig.4(b)). β . (b) ,Tapping 2α , (b) ,(a) . 1 A= , 1 1 + +1 tan 2 α ' tan 2 β , . , (1) FR . Fig.3 R ,Fig.4(b) . 3.1.2 Tapping , , . Thread angle 2α Lead angle β (2)(3) . , Axial Force FR α (b) Wedge for . , Fφ p (a) Wedge for tapping process Tapping Fig.5 tightening process FR ' = 2 K M .Fig.5(a) ,(b) FR’ Z µ F NU Fφ α FR β β F NL FR Upper surface r Depth of wedge r 3.1.3 FR , ∆b/∆φ . ∆r/∆φ Y ∆r/∆φ a. Cylindrical screw (c) Tapping process model , , R FNL θ , yeng FR . (b) , d Dh (6) d d1 − d 4 p Dh = φ+ 2 2 y 2π 2 d − Dh d1 − d 4 p = φ r= 2 2 y 2π . , . (c) , , , (6) . , , . , , , . , , d4/2 d/2 d1/2 Dh/2 -yeng Fig.6 Geometrical modeling . for tapered screw top (5) (6) γ . (7) (7) ∆r/∆φ p . b. Fφ (1) ∆r/∆φ (7) ∆r d1 − d 4 p = =γ 2 y 2π ∆φ , 3. 3.1 Tapping 3.1.1 Fig.5(a) , θ FR FR Aµ Fφ = Aµ sin β sin α '+ tan α ' tan α ' = tan α cos β d/2 r , Tapered screw y-yeng 0 . φ (5) FR’ (a) , FR Y=0 . Fig.6 Fig.6 FR ’ .Tapping R φ , . Fig.5 Extension of wedge based model FNU ,µ . b ∆φ ,(4) Z , FR’ . θ Angle of rota tion [ra d] . ρ ⊿φ Lower surface , Fφ , (4) b Width of wedge KG Geometrical coefficient KM Yield stress Driving Torque TD R (a) KM, . b, FR’ Fφ µ F NL ,ν . Ta pping torque [N mm] Driving b Z’ F NU α r Screw thread (4) FR’ α Slip-Line field method FR=KG KM b r R ,b r, (b) Simplicity wedge model θ (4) .KM . (4) ,(c) . Decomposition of force R . Aµ (1 + α '−ν + ρ ) sin α '+ tan α ' r ⋅b cos α '−(cos ρ + sin ρ ) sin ν r ,ρ (a) Geometrical model β FR’ β Fig.4 Two wedge models for tapping screw fastening 2.3 Fig.4 (3) R R . (1) (2) (8) ∆b/∆φ ∆b d/2 ,(5) (8) . D 1 d1 − d 4 p ∆b = φ + h ∆φ cos β 2 y 2π 2 b (8) φ , b d5 φ d5 ∆b = =η ∆φ 2 cos β ,(9) . η . (9) d5 (8) φS b (9) (10) 3 . . . d + Dh d5 = 1 2 , β 2.6[mm] (10) 2α . Tap-tite , Table 1 . Table 1 Specification of tapping screw c. (7) (9) ∆r ∆b (4) ,Tapping r b . ,KG d1/2 . (4) µA ∫∫ sin β K G K M γη∆φ∆φ d µA TD = 1 K G K M γηφ 2 2 sin β TD = 2 Screw Type S-tite B-tite Fit-tite ,(1) d1 2 end d 4 [mm] Pitch p [mm] Lead angle β [deg] 1.8 1.8 1.8 0.45 0.907 0.45 3.1 6.3 3.1 Diameter of screw 245[N/mm2] , t . 8 8 8 1.8 1.6 1.8 , KM Dh 2.1, 2.2, 2.3, 2.4, 2.5[mm] 1.2, 2.0, 2.5, 3.2[mm] 4.2 . , . , (12) (11) . . Table 2 Table 2 , , . Process Thrust force [N] (15) (16) φ . φ=0), . Table 2 Screw driving condition in experiment d µA log TD = 2 log φ + log 1 K G K M γη 2 sin β (11) , , φ , . φS ( 60 60 30 (11) 1 + α '−ν + ρ KG = cosα '−(cos ρ + sin ρ )sinν ,(11) Thread angle Length of screw Length of tapered 2α [deg] L [mm] screw y [mm] Rotation Speed [rpm] Fig.7 Tapping Pre Thightening Thightening 52 400 52 300 52 50 5. (Fig.7 (11) ) . φ φS . TSmax φS Swaging Dh . . t . 5.1 α Fig.9(a) Fig.7 Rotation angle φ Fig.9(a) d − Dh φS = 1 2γ (16) φS φS . 4. Tapping , . Driving torque [N mm] . φS ,(7) ) . Fig.8 2.6[mm] 0.2 . γ , ,(4) 2.3[mm] ((11) d1 , . 3.2 (11) 3 ,(7) , . Dh (11) Dh 4.1 ① ② ③ γ φS . S-tite Dh2.3 t1.2 600 B-tite Dh2.3 t1.2 500 400 300 200 100 0 0 3 . . 400 Experiment Theory 300 200 100 0 S-tite 30 ,Fig.9(a) p B-tite Screw type φS .Fig.10 2 ) Fig.10 2α ( S-tite B-tite Fit-tite 150 10 20 Angle of rotation [rad] φS Table 1 ) 3.2 ( Fig.10 ,(11) . 100 . 2 , , . (7),(9) 50 , 0 . 0 Fit-tite (a) (b) Fig.9 Influence of screw geometry on driving torque , 250 200 Fit-tite Dh2.3 t1.2 Driving torque , Driving torque [N mm] (16) p (b) . 2.3[mm], 1.2[mm] ,Fig.8 .Fig.9(b) , Swage angle φ=φS N mm] φ=0 β . 2 4 6 Angle of rotation [rad] 8 10 , , Fig.8 Example of simulation results based on eq.(11) . , , . (11) S-tite t1.2 S-tite t2.5 S-tite 1000 .Fig.10 Fit-tite ,S-tite , B-tite 1.5 . S-tite Fit-tite B-tite 1000 1.2 Driving torque [N mm] , ( ) ( B-tite S-tite Fit-tite ) ( ) ( ) 100 10 1 Driving torque [N mm] S-tite t2.0 S-tite t3.2 100 1 2 4 Angle of rotation [rad] 10 B-tite t1.2 B-tite t2.5 B-tite 1000 2 4 Angle of rotation [rad] 6 8 Driving Torque [N mm] 1 10 Fig.10 Influence of screw geometry on driving torque (log-log scale) 5.2 1.2[mm] Dh Fig.11 Fig.12 Dh φS . , . 10 ) 10 2 4 Angle of Rotaiton [rad] . , Dh , Fig.12 Dh ) Dh . , (1) , . B-tite . , 2.4, 2.5[mm] ,5.1 , , , . , (2) . , φ . S-tite ( S-tite Dh2.2 S-tite Dh2.4 2 (3) , ① β , ② 10 2 4 6 Angle of rotation [rad] 8 B-tite Dh2.1 B-tite Dh2.3 B-tite Dh2.5 β . φ α φ ③ 1 , . Dh t 10 Dh Fig.11 Influence of drilled hole diameter on driving torque in case of S-tite (log-log scale) 1000 . S-tite Dh2.1 S-tite Dh2.3 S-tite Dh2.5 ) 100 1 10 (Tapping . , , 1000 8 6. , . , S-tite 6 Fig.14 Influence of thickness of tap plate on driving torque in case of B-tite (log-log scale) Dh . ( 100 1 2 Fig.11 B-tite t2.0 B-tite t3.2 1 Dh . , Driving torque [N mm] 8 Fig.13 Influence of thickness of tap plate on driving torque in case of S-tite (log-log scale) 1 Driving torque [N mm] 6 B-tite Dh2.2 B-tite Dh2.4 B-tite ( , (2) (4) Dh . 2 . , ) 100 Tapping , , , 10 , . , 1 1 2 4 Angle of rotation [rad] 6 8 10 , , . Fig.12 Influence of drilled hole diameter on driving torque in case of B-tite (log-log scale) 5.3 2.3[mm] Fig.13 t Fig.14 . (1) φS t . . t 2 , . , . t t , , 2007 (2) Martin Wagner, G. Seliger, Modeling of Geometry Independent Endeffectors for Flexible Disassembly Tools, Proceedings of 3rd Int. Seminar on Life Cycle Engineering, Zurich, (1996) (3) , , , (1981)