...

第46巻 第4号

by user

on
Category: Documents
38

views

Report

Comments

Transcript

第46巻 第4号
ࡄ‫ݪ‬৒̺ͤ͢!
! ! Field-effect in oxides
Division of Nanoscale Science, Mikk LIPPMAA
1 Introduction
Transition metals offer a rich playground for a number of different areas of physics, from basic theory to applications.
Even well-studied compounds that have seemingly simple structure, like the well-known perovskites SrTiO3 and
BaTiO3, still continue to baffle us, both in terms of a theoretical understanding and experimental control over the
structure and properties of these materials. A good example of the challenges presented by oxides in general is
provided by the family of superconducting cuprates. Despite being subjected to an unprecedented level of scrutiny
over the past 20 years, the mechanism of superconductivity still remains unexplained. One of the reasons for these
difficulties is the tight interplay between the electronic structure and minute changes in the crystal structure of
oxides. Due to the compositional complexity, the dominating electronic phase is often determined by the
microstructure of a sample, rather than the structural model that might be inferred from the chemical composition.
Changes in microstructure, such as the formation of nanoscale grains, can alter the lattice spacing, which can alter
metal-oxygen bond angles and defect formation, leading to band structure changes, and ultimately resulting in a
material switching to a different ground state, e.g. an insulator instead of a superconductor, or a ferroelectric instead
of a paraelectric, etc.
The work in this laboratory is directed at achieving a better control over oxides in the form of thin films. The
basic idea is that in oxide heterostructures it is possible to tune one certain characteristic of a crystal more or less
independently from others. We can, for example, change the lattice parameter by epitaxial strain, without changing
the chemical composition. We can also change the density of charge carriers by field effect without altering the
dopant concentration or the structure of a crystal. This approach will, hopefully, allow us to decouple the electronic
and structural aspects of oxides and thus lead to a better understanding of these fascinating materials.
2 Advantages of Thin films
The properties of oxides can be probed in many different types of samples. A common approach is to strive for
perfection in crystal quality and grow the best possible single crystals for detailed characterization. Single crystals,
however, limit us to compositions and structures that are in or at least close to a thermodynamic equilibrium.
A complementary approach is to acknowledge that perfect crystals of complex oxides cannot be grown anyway,
and to deposit thin films instead. Although the crystallinity of films is often lower than that of single crystals, films
do offer a number of additional degrees of freedom for controlling the material properties. The biggest advantage of
thin film growth is that the process is governed by the growth kinetics and it is therefore possible to impose an
artificial nonequilibrium structure on a sample. Simple examples are epitaxial heterostructures, but more complex
lattices can also be grown, e.g. nanostructure arrays, nanoscale composites, and even complete epitaxial device
structures. [1,2]
Another advantage of thin films is the high speed at which samples can be grown. Typical thickness of an oxide
film is measured in tens of nanometers and it is therefore perfectly feasible to grow several crystals in one day.
Integration of many different thin film samples on a single substrate can push this number much higher. [3] This can
be very useful, because it means that we can map the variation of material properties across sections of the phase space.
1
3 Crystal growth
Oxide thin films can be grown by many different techniques. For research purposes, physical vapor techniques like
molecular beam epitaxy (MBE), sputtering, and laser ablation are usually preferred. Among these techniques, laser
ablation, or laser-MBE, is used in our group because it is technically relatively simple yet extremely versatile in
terms of materials and structures that can be grown. We can routinely achieve sub-monolayer deposition rate
control and fabricate samples containing heterostructures, superlattices, nanodots or nanowires.
The largest
challenge is to achieve repeatable and accurate control of crystal composition, defect density, and grain structure.
The usual process parameters that we have at our disposal for controlling crystal growth are the growth
temperature, growth rate, and chemical composition. Composition control can be done at two levels. On a rough
scale, we ensure correct stoichiometry in the film by preparing a deposition target with the desired chemical
composition. This will usually give us films that are within about a tenth of a percent of the desired composition and
therefore possess the crystal structure and electronic phase that we desire.
In many complex oxides, however, this accuracy is not sufficient because we study materials that are close to
electronic phase transitions, where the transport behavior is very sensitive to the density of carriers, or the average
valence state of cations. One such material is SrTiO3, where an insulating parent compound transforms into a
semiconductor, metal, and even a superconductor at doping levels of 1018 to 1020 cm-3. It is thus clear that a much
finer composition control is required than what is easily accessible by simple composition adjustment of deposition
targets.
One way of achieving such control is to utilize the slightly element-selective nature of the laser ablation process.
Specifically, by changing the fluence of the ablation laser, and thus the momentary heating of the evaporation target
surface, we can fine-tune the cation composition in the growing film. This process is illustrated in Fig. 1(a), which
shows a collection of x-ray diffraction patterns from a series of about 50 thin film samples grown at various ablation
laser fluence levels. In all cases, SrTiO3 films were grown homoepitaxially on a SrTiO3 substrate. The substrate
(200) diffraction peak is visible at an angle of 46.5°. It is obvious that the films, despite having the same nominal
composition as the substrate, have significantly different lattice parameters from the substrate. This indicates that
cation nonstoichiometry is present in the films, resulting in lattice parameters that deviate from the bulk value.
Figure 1: (a) X-ray diffraction patterns of a series of homoepitaxial SrTiO3 films, taken in the vicinity of the substrate (200) peak.
The splitting of film peaks from the substrate peak shows that the lattice of the films is larger than in the substrate. (b) The lattice
expansion is a strong function of the ablation laser fluence, and thus the cation stoichiometry. Blue lines are guides for the eye to
illustrate the general tendency.
The deviation of the lattice parameter in the film is plotted as a function of ablation fluence in Fig. 1(b). The plot
shows that below a critical fluence of about 0.3 J/cm2, the lattice quickly expands. Careful analysis of TEM images
has shown that this expansion is caused by the incorporation of extra Sr in the film, i.e. preferential evaporation of Sr
2
from the target at low fluence. At fluence values above 0.3 J/cm2, evaporation favors Ti, and the films thus have a
slight Ti excess. [4] This type of experiment can be used to answer the question of how the electronic properties of
the Sr1+xTi1-xO3 vary as a function of x for small deviations from the ideal stoichiometry.
Stoichiometry deviations obviously result in lattice parameter changes.
The associated vacancies or other
defects can also function as donors for carriers. In systems that are sensitive to small changes in carrier
concentration, this means that composition variations always change both the band filling and the band width. In
thin films, it is possible to decouple these two effects. By using epitaxial strain, we can alter the lattice parameter
without changing the carrier density. In heterostructures, we can introduce carriers by charge transfer or by field
effect, without changing the lattice parameter.
3.1 Strain control
The crystal lattices of many oxides can be viewed as stacks of two or more different types of atomic layers. Thin film
growth offers a way of extending such layering by growing crystals one atomic layer at a time and thus opens a way to
explore the properties of very thin heteroepitaxial layers that can behave quite differently from bulk materials. The
electronic structure of interfacial layers can be influenced by a number of factors, many of which we have
experimental control over. These factors include large compressive or tensile strains of several percent, which would
be unreachable in bulk single crystals. Strain is imposed on thin layers due to a lattice constant mismatch between
materials that are combined. The level of strain can thus be tuned by suitable materials selection or by tuning the
compositions of interface layers. [5,6] Tuning strain in thin films has been shown to affect the type of magnetic
ordering that is observed in manganites, change the critical temperature of high-temperature superconductors, turn
paraelectric titanates into ferroelectrics, and generally affect the easy axis of magnetization and magnetic ordering
temperatures in various oxides. Examples for SrRuO3 behavior under various levels of strain are shown in Fig. 2.
Compressive
Relaxed
Tensile
Figure 2: The influence of epitaxial strain on the magnetization of SrRuO3. By changing the in-plane lattice parameter of the
substrate, thin layers of SrRuO3 can be grown under compressive strain (green), relaxed state (brown) or under tensile strain
(violet). The easy axis of magnetization can be seen to rotate into the film plane under tensile strain but orient parallel to the
surface normal under compressive strain. Tensile strain also increases the magnetic ordering temperature by about 10%.
3.2 Charge transfer
Another important effect at interfaces is charge transfer between atomic layers. Redistribution of charge across an
interface is a common feature in oxide heterostructures which contain elements that can assume more than one
valence state. Charge redistribution can be directly observed by valence-band photoemission in, e.g. manganite thin
films that are combined in heterostructures with Ti or Fe oxides. Variations of the valence band photoemission
3
spectra of La1-xSrxMnO3 films are shown in Fig. 3 [7,8] The surface layers of thin films can, obviously, be probed
directly by photoemission spectroscopy. The advantage here, compared to bulk crystals, is that reasonably
well-ordered surfaces can be prepared in situ, even for cubic materials that cannot be easily cleaved.
Figure 3: The left panel shows the valence band spectra of La1-xSrxMnO3 for various carrier doping levels x. Spectral feature A
corresponds to the eg levels of Mn, B corresponds to the t2g levels, and C is the O 2p peak. The electron density drops in the eg levels
as the hole doping x increases. In a Mn/Fe heterostructure, the redistribution of charge can be monitored in the Mn oxide layer by
measuring resonant 2p-3d Mn valence band spectra for various thicknesses of the Fe oxide capping layer. Only the eg and t2g spectral
features are visible due to the resonant enhancement of the Mn emission. A cartoon of the measurement is shown on the right.
Measuring the electronic states of buried interfaces layers by photoemission is more difficult, but still possible
when resonant excitation is used. By tuning the x-ray source to the 2p-3d resonance of an element in the buried
layer, the emission intensity from that layer can be greatly enhanced, allowing valence band spectra to be measured
for layers that are covered by a thin cap layer of up to a few unit cell thickness. For the La1-xSrxMnO3 / La1-xSrxFeO3
system, we are therefore interested in the resonant energy of Mn, which is at around 644 eV[9] and of Fe, which is at
around 710 eV.[10] The advantage of resonant spectroscopy is illustrated in Fig.3, where the valence band spectra of
a Mn/Fe heterostructure are shown. A thick La1-xSrxMnO3 film was covered with a thin La1-xSrxFeO3 layer and the
transfer of charge between Mn and Fe was studied. Measurements of samples with a variable cover layer thickness
showed that when La1-xSrxMnO3 is combined with La1-xSrxFeO3, electrons are transferred from the Mn to Fe within a
distance of approximately three unit cells closest to the interface. Effectively, this means that the hole concentration x
is significantly increased close to the interface on the Mn side. Indeed, the change is large enough to destroy the
ferromagnetic phase of La1-xSrxMnO3 within a few unit cells of the interface, which would be bad news if the Mn oxide
were used in a tunnel junction, for example.
While charge transfer at interfaces can be an advantage, in applications it is usually an undesirable effect,
because it means that interface layers behave differently from what one might expect based on bulk material
characterization data. Charge transfer effects often result in thin interfacial layers that are simply called dead
layers and accepted as inevitable, particularly in applications like tunnel junctions. Recent work on measuring the
valence band structure of thin surface and interface layer has opened a new path to correcting such unintended
changes in electronic structure by compensating for charge transfer in each atomic layer by intentionally grading the
chemical composition for each atomic layer in a heterostructure.
3.3 Field effect
The carrier density in an oxide can be modulated by chemical doping and by transfer of charge over short distances at
heterointerfaces.
A third method that can be used to modulate the doping level is field effect.
Field-effect
transistors are arguably the most successful electronic devices ever invented and form the basis for all modern
4
electronics. In oxides, field effect doping of materials offers a way to probe the electronic phase transitions without
creating disorder and lattice parameter changes that inevitably accompanies chemical doping. Field-effect doping
also allows material properties to be modulated repeatedly in a single structure, unlike other doping methods, where
the dopant concentration is fixed during synthesis.
The basic tool of field-effect doping is a field-effect transistor (FET). A number of different device geometries
can be used, but essentially the device has two electrodes, the source and the drain, that feed current into a channel.
The conductivity of the channel is modulated by applying an electric field. The electric field can be applied by
covering the channel with a ferroelectric film, as shown in Fig. 4 (a), or by constructing a parallel-plate capacitor and
applying a bias voltage to the gate electrode, as shown in Fig. 5 (a). The advantage of using a ferroelectric material
as the gate electrode is the ease with which very high electric fields can be obtained, without having to handle the
problem of leak currents and breakdown phenomena that always affect dielectric gate insulator designs.
The
capacitor-type device illustrated in Fig. 5 (a) has the advantage that the gate bias can be changed continuously,
unlike the ferroelectric, which can only be poled to a fixed polarization level of either sign.
The effectiveness of using a ferroelectric film to induce charge at an interface can be seen in Fig. 4 (b).[11] In
this case, a Nb-doped SrTiO3 film was covered with a ferroelectric layer of Pb(Zr,Ti)O3. The slightly underdoped
Nb:SrTiO3 film had a superconducting transition temperature of about 250 mK. The ferroelectric cover layer was
polarized with either a positive or a negative bias of a conducting AFM tip, thereby inducing a charge at the top
surface of the superconducting film.
The P+ polarity corresponds to a reduction of electron density in the
superconductor, while P- corresponds to an increase of carrier density. As a result, the superconducting transition
temperature of the Nb:SrTiO3 film could be shifted by about 50 mK. If the sample temperature is held at 250 mK, it
is possible to switch the film between normal and superconducting states.
An interesting potential application of this technique is the ability to draw superconducting shapes in the film
with an AFM tip. The inset in Fig. 4 (b) shows a line of different polarity drawn on the sample surface. If the polarity
is selected so that the red line corresponds to normal state, the structure could function as a Josephson junction.
Drawing more complex shapes, like nanoscale dot or wire arrays would also be possible. The AFM can be used to
erase and rewrite different patterns in the same sample.
Figure 4: A Hall bar field-effect device (a), consisting of a superconducting Nb-doped SrTiO3 film and a ferroelectric Pb(Zr,Ti)O3 cap
layer. The ferroelectric can be poled with a conducting AFM tip, inducing local shifts of the superconducting transition temperature (b).
A more traditional top-gate field effect transistor (FET) can be used to continuously vary the carrier density in
the channel layer. Our current work is focused on using intrinsic SrTiO3 substrates as the channel of the FET.
Source and drain electrodes are patterned in the substrate surface and an epitaxial or amorphous gate insulator is
deposited. The usual choice for the insulator layer in our devices is either CaHfO3 or DyScO3. Both materials are
wide-gap insulators with low leak currents. A gate field of up to about 8 MV/cm can be applied to the gate electrode,
5
corresponding to a sheet carrier density of 5×1013 cm-2. Assuming a channel layer thickness of 10 nm, the carrier
density induced by field effect in the active region of the transistor can be in the range of 1019 cm-3, which covers the
region where an insulator-metal transition occurs in SrTiO3.
This transition can indeed be seen in SrTiO3 devices, as shown in Fig. 5 (b). The crossover from an insulating
into metallic state occurs at a critical gate bias of 1.3 V. All the gate bias curves cross at a single point at this bias.
The transition from insulating to metallic state is even more obvious in a temperature dependence plot of the channel
current, shown in Fig. 5 (c). The behavior of the device can be understood if we assume that the Fermi level of
undoped SrTiO3 is close enough to the conduction band bottom for carriers to be thermally excited to the conduction
band. Due to the low density of in-gap states, even a fairly small field-induced sheet carrier density can push the
chemical potential in SrTiO3 higher, until it reaches the band edge and the devices switches to a metallic state.
While the temperature dependence of channel conductivity has a thermally-activated shape in the insulating state
and a negative slope in the metallic state, the critical bias value is determined only by the distance of the Fermi level
from the band bottom and is thus independent of temperature.
Figure 5: The basic top-gate field-effect transistor structure (a) using SrTiO3 as the substrate and channel material, metallic LaTiO3
/ SrTiO3 films as source and drain electrodes, and CaHfO3 as the gate insulator. The insulator consists of a thin epitaxial layer and
an amorphous cover layer. An insulator – metal transition occurs at a gate bias of 1.3 V (b). The temperature dependence of
channel current at various gate bias levels clearly shows the transition to metallic state when the gate bias exceeds 1.3 V (c).
4 Conclusion
Thin films, combined with fairly simple device fabrication tools, offer an interesting way to probe phase transitions in
complex oxides.
The active region that is probed by transport measurements in strained heterostructures or
field-effect devices is usually very thin, on the order of a few nanometers. The next challenge for us is to integrate
oxide nanostructures into these devices and attempt to probe the properties of oxides in structurally and
electronically confined geometries.
Figure 6: Our research group in front of the ISSP building in October 2006.
6
References
[㧝] M. Lippmaa, K. Terai, N. Nakagawa, K. Shibuya, M. Kawasaki, and H. Koinuma, Proc. SPIE 4467, 128 (2001).
[㧞] N. Nakagawa, M. Lippmaa, K. Shibuya, H. Koinuma, and M. Kawasaki, Jpn. J. Appl. Phys. 41, L302 (2002).
[㧟] T. Ohnishi, D. Komiyama, T. Koida, S. Ohashi, C. Stauter, H. Koinuma, A. Ohtomo, M. Lippmaa, N. Nakagawa,
M. Kawasaki, T. Kikuchi, and K. Omote, Appl. Phys. Lett. 79, 535 (2001).
[㧠] T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, and H. Koinuma, Appl. Phys. Lett. 87, 241919 (2005).
[㧡] K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, T. Fujii, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 80, 4437
(2002).
[㧢] K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, H. Koinuma, M. Ohtani, and M. Kawasaki, Appl. Surf. Sci. 223, 183
(2004).
[㧣] H. Kumigashira, K. Horiba, H. Ohguchi, D. Kobayashi, M. Oshima, N. Nakagawa, T. Ohnishi, M. Lippmaa,
K. Ono, M. Kawasaki, and H. Koinuma, J. of Electron Spectroscopy and Related Phenomena 136, 31 (2004).
[㧤] H. Kumigashira, D. Kobayashi, R. Hashimoto, A. Chikamatsu, M. Oshima, N. Nakagawa, T. Ohnishi,
M. Lippmaa, H. Wadati, A. Fujimori, K. Ono, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 84, 5353 (2004).
[㧥] K. Horiba, H. Ohguchi, D. Kobayashi, H. Kumigashira, M. Oshima, N. Nakagawa, M. Lippmaa, K. Ono,
M. Kawasaki, and H. Koinuma, J. Magn. Magn. Mat. 272-276, 436 (2004).
[10] H. Wadati, D. Kobayashi, A. Chikamatsu, R. Hashimoto, M. Takizawa, K. Horiba, H. Kumigashira, T. Mizokawa,
A. Fujimori, M. Oshima, M. Lippmaa, M. Kawasaki, and H. Koinuma, J. Electron Spectrosc. Relat. Phenom.
144-147, 877 (2005).
[11] K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, and J.-M. Triscone, Nature 441, 195
(2006).
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
7
‫֥ݖ૽࣭ٸ‬ਫ਼֥ͬࠐࡑ̱̀!
Cun-Zheng NING
Visiting Professor from June 20 to September 20, 2006
Home institution: NASA Ames Research Center
As was originally planned, the themes of my research activities are around many-body physics of semiconductor
nanostructures. My activities are summarized as follows:
1) Collaboration on the Mott transition in one-dimensional system
The Mott transition in an optically excited semiconductor has been one of the most important issues of many-body
physics of semiconductors, especially for one-dimensional systems. It was a very opportune time and place to
conduct research on this topic. Akiyama san’s group has the cleanest quantum wire samples in the world with the
best spectroscopic data obtained recently. They have for the first time measured both photoluminescence and
absorption spectra simultaneously under the same conditions. Such clean spectroscopic data allow some of the very
central issues of the Mott transition be analyzed in detail. I have spent a lot of time trying to understand the full
implication of their recent data to the Mott transition. I had almost daily discussions with Akiyama san on this issue
and on the understanding of their data. Together we have concluded the following on the Mott transition:
a) The optical gain observed in their system is due to biexciton to exciton transition. This is the first observation
of biexciton gain in a 1D system. This conclusion is based on the following features of the spectral data:γ) the
gain bandwidth is very narrow, corresponding to a dephasing time of more than 5 picosecond which is longer
than the typical dephasing time in a plasma, excluding degenerate plasma as a source of gain; δ) optical
gain occurs at a much lower density and when the photoluminescence spectrum still shows clear exciton and
biexciton peaks; and ε) the gain occurs when the biexciton peak overtakes exciton peak in the PL as total
pair density increases. The observation and understanding of such biexcitonic gain are significant in several
ways: It shows for the first time that optical gain can occur in a 1D system before the Mott transition and it
will allow much lower threshold quantum wire lasers be made than is achieved hitherto.
b) The Mott transition occurs through several stages of coexistence between excitons, biexcitons, and free
electron-hole plasma. We have identified four stages from free exciton gas, through biexcitons, to free plasma.
These research results provide a more complete picture for the Mott transition and shed light on the nature of
the Mott transitions in 1D system. We have plans of conducting more experimental investigations to fully
establish a complete picture of the Mott transition.
The results of our collaboration are contained in a manuscript entitled “Biexciton gain and the Mott transition in
GaAs quantum wires”, authored by Hayamizu, Yoshita, Ning, Takahashi, Akiyama, Pfeiffer, and West and just
submitted to Phys. Rev. Lett.
2) Investigation of the possibility of two-photon laser based on semiconductors
Together with Akiyama san we analyzed different possibilities of a semiconductor two-photon laser. We analyzed
both intersubband transitions in semiconductor quantum wells and biexcitons in CuCl system. The very long
phase coherence time of biexciton waves in CuCl provides a very appealing alternative to our original idea of using
intersubband transitions. In addition, the large biexciton binding energy (of ~20 meV in CuCl) allows enhanced
degenerate two-photon process, while keeping the competing one-photon exciton process sufficiently detuned far offresonance. But we realized that the published results by Gonokami’s group on this system are not likely to lead to a
8
continuous-wave optical gain because of the pre-dominating absorption process. We also had discussions with Prof.
Gonokami of Applied Physics Department, University of Tokyo. Our discussion led to a possibility of arranging
samples and pumping beam configurations such that two-photon emission process is kept unchanged, while twophoton absorption process is inhibited or significantly weakened. Such scenario is likely to lead to a CW two-photon
gain in CuCl.
Currently we are still analyzing this scenario in more detail. Possible collaboration with Prof.
Gonokami on this issue will be pursued.
3) Bandgap renormalization in 1D system
One of the well-known phenomena in semiconductor optics is the bandgap renormalization due to Coulomb
interaction. So far theories and experiments have shown strikingly conflicting results: While experiments by
Akiyama san’s groups and others have shown almost no bandgap shrinkage up to a very high density, while all the
theories so far have predicted continuous bandgap shrinkage starting from a very low density. This issue is also
closely related to the Mott transition. After my extensive study of the existing literature in the field and extensive
discussions with Akiyama san, we realized that the reason for such conflicting pictures between theories and
experiments is because all the theories have used the total electron-hole pair density for the calculation of bandgap
renormalization. We believe that such a use of the total density is not justified, since at very low density, majority of
the total density is in the form of exciton gas or in the co-existence phase of excitons and biexcitons. They do not
contribute to bandgap renormalization in the way as assumed in the current theories. This idea is the key in a
possible resolution of this contradiction. Dr. Huai of Osaka University has conducted preliminary estimate based on
our assumption and the results have show a much more consistent bandgap renormalization with experimental
measurements. The work is still continuing on this issue in collaboration with Prof. Ogawa’s group.
4) Interactions with other groups in Japan
In addition to my activities at ISSP described above, I also used this opportunity to interact with other groups in
Japan. We had extensive interaction with Prof. Ogawa’s group at Osaka University. Prof. Akiyama and I visited
Osaka group and Dr. Ping Huai (Postdoc of the Osaka group on a joint Akiyama-Ogawa project) visited Akiyama san
and me twice during my stay. Currently we are still continuing our collaboration on semiconductor quantum wire
lasers. We have also visited Prof. Gonokami’s group of the Applied Physics Department, University of Tokyo and had
extensive discussions with him on the two-photon laser as mentioned above.
5) Talks and conferences
During my stay, I also participated in two international conferences on behalf of ISSP and gave following talks:
b) Plenary talk entitled “Semiconductor Nanowires for Nanophotonics: Progress in Theory and Experiment”,
Conference on Optical Properties of Condensed Matter, Xiamen, China, August 4th-August 10th , 2006
c) Invited talk entitled “Compound semiconductor nanowires as nanolasers” at International Symposium on
Compound Semiconductors, Vancouver, Canada, August 13-August 17, 2006
In addition, I gave following talks at Akiyama group seminar
d) Selected issues of many-body effects in semiconductors, August 26, 2006
e) Semiconductor nanowire nanophotonics, September, 2006
Acknowledgement: First of all, I would like to thank the ISSP Director and his staff for arranging a very fruitful
visit. I would like to thank in particular my host, Professor Akiyama for his readiness to discuss physics all the time
and anytime. He has made my visit a very successful collaboration. I would also like to thank Kameda san of the
ISSP-ILO for being very thoughtful and helpful with every thing from small to big. She is great! I also thank Bessho
san and Kubo san for all the business related helps. They all together made my stay a very memorable one. I
enjoyed it very much. I hope to maintain my relationship with all of them and with ISSP.
9
‫֥ݖ૽࣭ٸ‬ਫ਼֥ͬࠐࡑ̱̀
Yuriy BUNKOV
Directeur de Recherches
Centre de Recherches sur les Très Basses Tempèratures, CNRS
Grenoble, France
My participation in ISSP fundamental physics investigations started a few years ago, when Kubota laboratory
decided to use the NMR method of Homogeneous Precession Domain (HPD) for studies of superfluid 3He in Aerogel
under rotation. Why are these investigations so important, so that a physicist like me from the other side of the
globe comes repeatedly to Kashiwa and leaves his own investigations for a time? The answer is simple: because ISSP
has a unique installation, the nuclear demagnetization refrigerator on a fast rotating platform. Now we have three
such platforms, in Helsinky, Manchester and Kashiwa. The rotation of superfluid 3He is very fundamental problem
of macroscopic quantum physics. The coherent quantum state can not rotate at all. The same effect appears in
superconductors, where role of rotation is played
by magnetic field. The vacuum of our universe is also in a
coherent quantum state. The rotation indeed can be performed with creation of topological defects (vortices, cosmic
strings as well as other types of defects)
In Helsinki, where I have been taking part in investigations during last 25 years, starting from montage of the
first rotating platform, we found and investigated, surely under rotation, about 15 different types of vortices in
superfluid 3He, including vortex sheets and spin-mass vortex. Many of these vortices have been predicted, but for the
cosmic strings in the Universe. And this is the main beauty of fundamental physics. One can study the properties of
one system in full analogy with another which looks completely different. Manchester group studied the rotation of
3He
in a slab geometry and found… the additional mechanism of vortex dissipation, which was explained by Volovik
as an analogy of hypothetical mechanism of particles creation in the Universe. Particularly it is interesting that this
mechanism can explain the fact that in our part of the Universe we can see only matter but not antimatter. It
remains hypothesis for the Universe, but it is now reality for superfluid 3He!
ISSP platform can rotate at least a few times faster than others. It is really an extreme condition for superfluid
3He.
We can study here the vortex types and the phase diagrams, which no one else has observed before. Furthter
more, we can even put, inside 3He, Aerogel, a network of impurities, and see the effects of rotation. These studies
have been performed in ISSP during last a few years.
My particular interest is the influence of mass rotation on another coherent quantum state, HPD. This is the
magnetic coherent state, which manifests itself as the condensation of spin waves in a single quantum state. We
have found it in 3He-B in 1984 in Kapitza institute, Moscow. The full collection of quantum phenomena, usual for
superfluidity and superconductivity, was demonstrated, including Josephson effect on Spin Supercurrent. HPD has
been used in Helsinki to investigate the transient processes at the acceleration of rotation, as well as the spin-mass
vortex and its dynamics. Now in Kashiwa we suppose to use HPD for studying the transient processes at
acceleration 3He in aerogel.
My three months visit to Kashiwa was organized to make these investigations. But, as usual in physics, the nice
surprise can suddenly appear. In addition to the planned study, we have found a new magnetic coherent quantum
state, now in A phase of 3He. This state was predicted by Volovik and me in 1993. Manchester group tried to observe
it in a slab geometry, but unsuccessful. In our ISSP experiment we have used pressurized aerogel, which oriented
the order parameter in a single direction, preferable for the observation of the new coherent state. This our discovery
is very fundamental for physics of magnetic coherent states, as well as a new and fast developing field of applied
physics.
10
‫֥ݖ૽࣭ٸ‬ਫ਼֥ͬࠐࡑ̱̀
Carlos WEXLER
Associate Professor of Physics
University of Missouri
My stay at the ISSP during the months of September to November of 2006 was hosted by Prof. M. Kohmoto. For
about ten years I have been doing research in areas closely related to the quantum Hall effect (QHE), and have
known of Prof. Kohmoto’s extensive research in problems related to electron transport in incommensurate and
quasiperiodic systems for about the same amount of time. In particular, Prof. Kohmoto’s research has been key in
understanding the effects of the crystalline structure in the QHE in connection to the elegant Hofstadter’s problem
and beautiful “Hofstadter’s butterfly.” In late 2005 I contacted Prof. Kohmoto and prepared an application for the
visiting professorship for the 2006-2007 period and the application was accepted in early 2006. Upon my arrival in
September 1st, we had a period of intense scientific discussions and many members of Kohmoto’s group (Dr.
Masatoshi Sato, Dr. Takahiro Aoyama, and Mr. Daijiro Tobe) gave short presentations of their research for my
enlightenment. After that we focused on the problem of electronic spin transport. Given our common backgrounds in
the QHE and the Hofstadter problem, we decided to consider the effects of spin-orbit coupling in the transport of
electrons in systems with competing periods. Our efforts have uncovered a possible spin-induced delocalization in
these systems and the results obtained so far were presented in an ISSP seminar last week (Spin-orbit induced
delocalization in quasiperiodic systems). We have also submitted an abstract to the American Physical Society’s
March 2007 meeting (Spinorbit coupling in quasiperiodic systems, C. Wexler, D. Tobe, and M. Kohmoto) and we are
working on a manuscript to be submitted to the Physical Review B. Overall, I gained significant experience in an
area I had not previously worked directly, and have made new scientific contacts with whom I expect to keep
collaborating in the future.
On a more personal level, I would like to thank the hospitality of all people here in the ISSP, but in particular of
Ms. Akiko Kameda and Ms. Mihoko Kubo of the ILO, who worked hard to make our stay very pleasant. The
accommodations (apartment) provided for myself and my family (my wife and 5 year old son) were excellent. Ms.
Kameda also helped locate an Englishspeaking kindergarten/pre-school (almost) nearby (in Kita-Kashiwa) which
proved very good for my son. We all had a wonderful experience in Japan; in fact, my son says he wants to come to
live here!
I do have one negative comment to make, whose solution seems very easy, so I will provide it as well. The problem
is that, while there is excellent science being done at the ISSP, it is not easy for a visitor to get a real sense of the
research here because of difficulty in establishing contacts between the foreign visitors and local researchers.
Conversely, I believe that the fraction of ISSP researchers who become aware of the visitors’ research is also
minimal due to the same lack of contact. I, for once, was not asked to give a single seminar based on my research
background which I find very surprising and counterproductive (why not use the opportunity given by the presence
of numerous visitors to get a broader vision of what is being done elsewhere?). Although some of the lack of
interaction may be attributed to language issues, this is not a sufficient reason and a solution should be sought. In
most institutions I visited, visitors are asked to give a seminar early-on after their arrival. This helps “break the
11
ice,” and facilitates further contacts. I believe that this should be instituted as an “unofficial policy” of the foreign
visitors program: visitors should give a seminar upon arrival and the seminar should have plenty of time for
informal discussions afterwards. Of course, “locals” should also give plenty of seminars for the benefit of the
“visitors,” but this is done to a certain degree already, and it may be logistically difficult to implement on a wider
scale given the large number of ISSP researchers.
As for my impressions of the science done at the ISSP: it seems quite excellent, indeed. The research done here is
on par with the best institutions in the world. Being a theorist, I cannot say much about the laboratories, but the
parts that affect me (computer support, networking, libraries, access to information and office space) are truly
excellent. Secretarial staff was very competent and the students and postdocs I was fortunate to interact with were
all very bright and selfmotivated.
Overall, I was very happily impressed with the ISSP and Japan in general. I had an excellent visit from the
science point of view, and my family and I truly enjoyed the unique experience that a visit to Japan is. I would like
to thank the ISSP for its hospitality, organization, and the generous financial support provided.
12
໤଻ࡄ‫ݪ‬ਫ਼ౣ‫ݪࡄܢ‬ٛ!
! ! କȂຕȂକளͬ‫̹̱ࣞ͂಺ܖ‬գ‫͈́ئ‬౷‫ݩ‬თି‫͂ڠش‬໤଻‫ڠش‬
ᣣᤨ㧦 ᐕ ᦬ ᣣ
Ἣ㨪 ᦬ ᣣ
᳓
ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ ጊ↰ࡎ࡯࡞㧔᧲ᶏ᧛㧕
ឭ᩺ઍ⴫⠪
㎛ ⵨ਯ ᧲੩ᄢቇℂቇㇱ ഥᢎ᝼
ߘߩઁߩឭ᩺⠪
ጊቶ ୃ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ഥᢎ᝼
౎ᧁ ஜᒾ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ᢎ᝼
㕍ᧁ ൎᢅ ේሶജ⎇ⓥᯏ᭴ ⎇ⓥਥછ
ᄢ⼱ ᩕᴦ ᧲ർᄢቇℂቇㇱ ᢎ᝼
౉⥵ ᔀ↵ ᗲᇫᄢቇ ࿾⃿ᷓㇱ࠳ࠗ࠽ࡒࠢࠬ⎇ⓥ࠮ࡦ࠲࡯ ᢎ᝼
ടୖ੗๺ਭ ේሶജ⎇ⓥᯏ᭴ ਥછ⎇ⓥຬ
ᧄ⎇ⓥળߪ‫ޔ‬᳓⚛࡮᳓ࠍࠠ࡯ࡢ࡯࠼ߣߒߡ‫ޔ‬㜞࿶⑼ቇ‫ޔ‬࿾⃿⑼ቇ࡮ᖺᤊ⑼ቇ‫‛ޔ‬ᕈ⑼ቇߩធὐࠍ⷗޿ߛߒߥ߇ࠄ‫ޔ‬ᣂߒ
޿⎇ⓥߩಾࠅญࠍតࠆߎߣࠍ⋡ᮡߦ㐿௅ߐࠇߚ‫ޕ‬ᖡᄤ୥ߩਛ‫ޔ‬ᐢ޿ಽ㊁ߦ߹ߚ߇ࠆ⚂ 65 ฬߩෳട⠪ࠍᓧࠆߎߣ߇ߢ߈ߚ‫ޕ‬
⧯ᚻ࡮ਛၷ⎇ⓥ⠪߇ෳട⠪ߩᄙߊࠍභ߼ߚ߇‫ޔ‬ቇㇱ↢߆ࠄࠪ࠾ࠕ⎇ⓥ⠪ߦ⥋ࠆᐕ㦂᭴ᚑߩᐢ߇ࠅ߽․ᓽ⊛ߢ޽ߞߚ‫ࠄߐޕ‬
ߦᣣᧄේሶജ⎇ⓥᯏ᭴ߩදജࠍᓧߡ‫৻ޔ‬ᣣ⋡ߦߪ J-PARC ࠍ‫ޔ‬ੑᣣ⋡ߦߪ JRR-3 ߩ⷗ቇ߽ⴕߞߚ‫ޕ‬᳓‫ޔ‬᳖‫ޔ‬᳓⚛ߩᧄ⾰
ࠍℂ⸃ߔࠆߚ߼ߦߪ‫ޔ‬ਛᕈሶᢔੂߩታ㛎߇ᔅ㗇ߢ޽ࠆߎߣ‫ߪߦ߼ߚߩߘߡߒߘޔ‬ᒝജߥࡄ࡞ࠬਛᕈሶ✢Ḯߦ㜞᷷㜞࿶ߣ
޿ߞߚ․ᱶ᧦ઙߢߩ᷹ቯ߇น⢻ߥⵝ⟎ࠍዉ౉ߔࠆߎߣ߇ᔅⷐߢ޽ࠆߎߣߥߤ߽⼏⺰ߐࠇߚ‫ᦨޕ‬ᓟߦ‫⎇ᧄޔ‬ⓥળࠍ㐿ߊߦ޽
ߚߞߡ‫‛ޔ‬ᕈ⎇ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߩ⊝᭽‫ޔ‬ේሶജ⎇ⓥᚲߩ⊝᭽ߦߏදജࠍ޿ߚߛ߈߹ߒߚߎߣߦෘߊᗵ⻢↳ߒ਄ߍ߹ߔ‫ޕ‬
ࡊ ࡠ ࠣ ࡜ ࡓ
21 ࠮ 35 ඾)‫!*غ‬
13:10-13:15 Opening
ᐳ㐳㧦㎛
㎛
⵨ਯ㧔᧲ᄢ㧕
⵨ਯ
13:15-13:40 ‛ᕈ⎇ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߩ᭎ⷐߣ⎇ⓥᵴേ
ᑝ↰ ๺㚍㧔᧲ᄢ㧕
13:40-14:05 J-PARC ⸘↹ߩ᭎ⷐߣ⃻⁁
⮮੗ ଻ᒾ㧔ේሶജᯏ᭴㧕
14:05-14:30 ࠢ࡜ࠬ࡟࡯࠻᳓๺‛ߩ⒎ᐨൻ⋧ォ⒖ߣࠕࡕ࡞ࡈࠔࠬൻ 㧙㜞࿶⎇ⓥ߳ߩዷ㐿㧙
ጊቶ
ᐳ㐳㧦ጊቶ
ୃ㧔᧲ᄢ㧕
ୃ
14:40-15:05 㜞࿶ਅߩ᳓㧦ਛᕈሶ߳ߩᦼᓙ
ጊ ⧐ೣ㧔ේሶജᯏ᭴㧕
15:05-15:30 ᳖⚿᥏ਛߩಽሶ᜛ᢔ
ᷓỈ ୶ሶ㧔᣿ᴦᄢ㧕
16:00-17:00 J-PARC ⷗ቇ
18:00-20:00 ᙣⷫળ
13
21 ࠮ 36 ඾)କ*!
ᐳ㐳㧦ᅏ࿾ ᜏ↢
9:00-9:25 J-PARC ߦ߅ߌࠆࡆ࡯ࡓ࡜ࠗࡦᑪ⸳ߩ⃻⁁
␹ጊ
9:25-9:50 H2O ice ߩૐ᷷⋧ォ⒖ߩߘߩ႐࡜ࡑࡦಽశᴺߦࠃࠆⷰኤ
ศ᧛ ᐘᶈ㧔㒐ⴡᄢ㧕
ፏ㧔KEK㧕
9:50-10:15 ᳖߅ࠃ߮ࠢ࡜ࠬ࡟࡯࠻ࡂࠗ࠼࡟࡯࠻ߩᒝ⺃㔚ᕈ
㧙᳖ᄤ૕ౝㇱߩࡊࡠ࠻ࡦߩ᜼േ㧙
ᷓỈ
10:15-10:40 ᳖ᄤ૕ߩౝㇱᵹേ
⵨㧔ේሶജᯏ᭴㧕
ਭ଻ ෹᣿㧔਻ᄢ㧕
ᐳ㐳㧦᳗੗ 㓉຦
10:50-11:15 ࠟࠬࡂࠗ࠼࡟࡯࠻ߩ㜞࿶቟ቯᕈߣ⋧੕૞↪
ᐔ੗ ኼሶ㧔╳ᵄᄢ㧕
11:15-11:40 Theory and computation of hydrous minerals and melt under high pressure
࿯ደ ථਭ㧔ᗲᇫᄢ㧕
11:40-12:05 ᳓⚛ࡂࠗ࠼࡟࡯࠻ߩㅦ޿ಽሶ᜛ᢔ 㧙࿕૕ߩਛߩᶧ૕㧙
ᅏ࿾ ᜏ↢㧔ฬฎደᄢ㧕
ᐳ㐳㧦 ጊ ⧐ೣ
13:10-13:35 ࡔ࠰ࡐ࡯࡜ࠬࠪ࡝ࠞౝߦๆ⌕ߒߚ᳓ߩ᭴ㅧߣ࠳ࠗ࠽ࡒࠢࠬ
ᄢ෹ ቄ຦㧔KEK㧕
13:35-14:00 ਇⷙೣ♽᳓⚛♽‛⾰ߩਛᕈሶ᭴ㅧ⸃ᨆ
㋈⼱ ⾫ᄥ㇢㧔ේሶജᯏ᭴㧕
14:00-14:25 ਛᕈሶ㕖ᒢᕈᢔੂߢߺߚᶧ૕ Se-Te ♽ߩ᭴ㅧ
ජ⪲ ᢥ㊁㧔ᘮᔕᄢ㧕
ᐳ㐳㧦౎ᧁ ஜᒾ
14:35-15:00 Palm Cubic Anvil ࿶ജ⊒↢ⵝ⟎ࠍ↪޿ߚਛᕈ࿁᛬ታ㛎ߩ⹜ߺ
਄ᐥ ⟤਽㧔᧲ᄢ㧕
15:00-15:25 ᳓⚛߇㎛ࠍីࠆ㊄ዻ᳓⚛ൻ‛ߩ࿶ജ⺃⿠᭴ㅧ࡮㔚ሶォ⒖
㕍ᧁ ൎᢅ㧔ේሶജᯏ᭴㧕
15:25-15:40 Closing Address
౎ᧁ ஜᒾ㧔᧲ᄢ㧕
16:00-17:00 ේ⎇ਃภἹ⷗ቇ
⎇ⓥળߢߩ⸛⺰ߩ᭽ሶ
14
J-PARC ⷗ቇߩ᭽ሶ
໤଻ࡄಎ଻ঊ‫ݪࡄڠش‬ঔ୭͈‫ٽ‬ါ͂ࡄ‫ڰݪ‬൲!
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ
ᑝ↰ ๺㚍
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲߪో࿖౒ห೑↪⎇ⓥᚲߣߒߡ 1957 ᐕߦ⸳┙ߐࠇ‫ޔ‬ᚒ߇࿖ߩ‛ᕈ‛ℂቇಽ㊁ߩ⎇ⓥ⸳஻࡮૕೙ࠍ࿖
㓙⊛᳓Ḱߦ㜞߼‫ޔ‬వ┵⊛ߥታ㛎ᛛⴚࠍ㐿⊒ߒߡ߈ߚ‫ޕ‬ਛᕈሶ߳ߩขࠅ⚵ߺߪߏߊೋᦼߦ㆚ࠆ߇‫ޔ‬1969 ᐕߦਛᕈሶ࿁᛬ㇱ
㐷㧔㧟ᚲຬ㧕߇Ⴧ⸳ߐࠇ‫ޔ‬ᣣᧄේሶജ⎇ⓥᚲ JRR-2 ⎇ⓥἹߦࠃࠆ౒ห೑↪⎇ⓥߦࠃߞߡᧄᩰൻߒߚ‫ޕ‬1990 ᐕઍߦ౉ࠅ‫ޔ‬
JRR-3 ߇ᣂ਎ઍߩ⎇ⓥἹߣߒߡᢛ஻ߐࠇߚߎߣߦ޽ࠊߖߡ‫ޔ‬1993 ᐕߦਛᕈሶᢔੂ⎇ⓥᣉ⸳㧔㧠ᚲຬ㧕ߣߒߡౣ✬ߐࠇߚ‫ޕ‬
એᓟ‫᧲ޔ‬ർᄢ࡮੩ㇺᄢߣߣ߽ߦ 10 ᢙบߩಽశེࠍో࿖౒ห೑↪ߦឭଏߔࠆ૕೙߇᭴▽ߐࠇ‫ޔ‬Ფᐕ 175 ᣣ㑆ߩࡆ࡯ࡓ࠲ࠗ
ࡓਛߦ‫ޔ‬250-300 ߩ⺖㗴‫ ⚂ޔ‬5000 ੱ࡮ᣣߩ೑↪⠪߇⎇ⓥࠍⴕ߁ߣ޿߁‫‛ޔ‬ᕈ⎇ᦨᄢߩో࿖౒ห೑↪ࡊࡠࠣ࡜ࡓߣߥߞߚ‫ޕ‬
2003 ᐕߦߪਛᕈሶ⑼ቇ⎇ⓥᣉ⸳㧔5 ᚲຬ㧕ߦᡷ⚵ߐࠇ‫ޔ‬Spin-Echo ⵝ⟎ iNSE࡮ዊⷺᢔੂⵝ⟎ SANS-U࡮TOF ဳಽశེ
AGNES ߘߒߡ㧟ゲಽశེ⟲ߩ㜞ᐲൻ߇ታᣉߐࠇߚ‫߇⟎ⵝߩߡో߷߶ߦߢߔޕ‬ᣂ਎ઍߩ೙ᓮⅣႺࠍ஻߃ࠆߣߣ߽ߦ‫ޔ‬ታല
ࡆ࡯ࡓᒝᐲߩჇᄢ߿ᣂߒ޿⹜ᢱⅣႺߩᢛ஻߇ߥߐࠇ‫ޔ‬᷹ቯߩല₸ൻߣߣ߽ߦᣂߒ޿⎇ⓥ㗔ၞ߳ߩዷ㐿߇ߪ߆ࠄࠇࠆࠃ߁ߦ
ߥߞߡ޿ࠆ‫ࠍ଀৻ޕ‬᜼ߍࠇ߫‫ᧄޔ‬ᣉ⸳ߩጊቶᚲຬ߇▤ℂߔࠆ AGNES ߢߪ‫ోߩ⟎ⵝޔ‬㕙⊛ߥౣ㐿⊒ߦࠃߞߡᒝᐲ߇㧟୚‫ޔ‬
ࡁࠗ࠭࡟ࡌ࡞߇ 10 ಽߩ㧝ߦߥࠅ‫ޔ‬S/N Ყߦߒߡታߦ 30 ୚߽ߩᡷༀࠍታ⃻ߒߚ‫ޔߡߞࠃߦࠇߎޕ‬એ೨ߢߪ⠨߃ࠄࠇߥ
߆ߞߚ♖ᐲߢߩታ㛎⎇ⓥ߇น⢻ߣߥߞߚ‫⻠ޕ‬Ṷߢߪ‫ޔ‬ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߩ᭎ⷐࠍ⚫੺ߔࠆߣߣ߽ߦ‫⎇ߥ߁ࠃߩߤޔ‬ⓥᚑ
ᨐ߇ᓧࠄࠇߡ޿ࠆߩ߆‫੹ޔ‬ᓟߤߩࠃ߁ߥᣇะ߳⊒ዷߐߖࠃ߁ߣߒߡ޿ࠆ߆ߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬
J-PARC ْ͈ࠗ‫ٽ‬ါ࡛͂ે!
ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴࡮㊂ሶࡆ࡯ࡓᔕ↪⎇ⓥㇱ㐷
⮮੗ ଻ᒾ
ᄢᒝᐲ㓁ሶടㅦེᣉ⸳ J-PARC
Japan Proton Accelerator Research Complexߪ‫ޔ‬ᢥㇱ⋭࡮⑼ቇᛛⴚᐡ⛔วߩࠪࡦࡏ
࡞ߣߒߡ‫ޔ‬ᐔᚑ 13 ᐕᐲߦ㜞ࠛࡀ࡞ࠡ࡯ടㅦེ⎇ⓥᯏ᭴ KEK
ᒰᤨߩ㜞ࠛࡀ⎇ߣᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ JAEA
ᒰᤨߩ
ේ⎇߇౒หߢᑪ⸳ࠍ㐿ᆎߒߚ‫ޕ‬ᒰೋ 6 ᐕ⸘↹ߢ޽ߞߚ╙৻ᦼ⸘↹߇ 7 ᐕ㑆ߦᄌᦝߐࠇߚ߽ߩߩ‫ޔ‬ᐔᚑ 19 ᐕᐲᣉ⸳ቢᚑ
ߦะߌߡ߶߷੍ቯㅢࠅᑪ⸳ߪㅴࠎߢ߅ࠅ‫ޔ‬ᐔᚑ 18 ᐕ 10 ᦬⃻࿷ㅴ᝞₸ߪ⚂ 70㧑ߢ޽ࠆ‫੹ࠃ޿ࠃ޿ޕ‬ᐕ 12 ᦬ߦߪ࡝࠾
ࠕ࠶ࠢ LINAC ߢߩࡆ࡯ࡓ⹜㛎߇ᆎ߹ࠅ‫ ⚂ࠄ߆ࠇߘޔ‬1 ᐕᓟߦߪ 3GeV ࠪࡦࠢࡠ࠻ࡠࡦ RCS ߢߩࡆ࡯ࡓ⹜㛎‫ޔ‬2 ᐕᓟߦ
ߪ‛⾰↢๮ታ㛎ᣉ⸳ MLF ߢਛᕈሶߣࡒࡘࠝࡦߩࡈࠔ࡯ࠬ࠻ࡆ࡯ࡓ߇ᓧࠄࠇࠆ੍ቯߢ޽ࠆ
౮⌀ෳᾖ㧦ߚߛߒ᠟ᓇߪᐔᚑ
18 ᐕ 2 ᦬‫߷߶ޕ‬หᤨᦼߦ 50GeV ࠪࡦࠢࡠ࠻ࡠࡦߦ߽㓁ሶࡆ࡯ࡓ߇ଏ⛎ߐࠇࡆ࡯ࡓ⺞ᢛ⹜㛎ߩᓟ‫ޔ‬㗅ᰴࡂ࠼ࡠࡦ‫ޔ‬
࠾ࡘ࡯࠻࡝ࡁታ㛎߇㐿ᆎߐࠇࠆ੍ቯߢ޽ࠆ
⹦ߒߊߪ http://j-parc.jp/‫ޕ‬
3GeV RCS㧔350m㧕
LINAC (330m)
MLF (Neutron & Muon)
Neutrino Facility
Hadron Beam Facility
50GeV Synchrotron (1600m)
15
‛⾰↢๮ታ㛎ᣉ⸳ߩᑪ‛ߪ┫Ꮏߒ‫ޔ‬ౝㇱߢߪਛᕈሶ߅ࠃ߮ࡒࡘࠝࡦ✢ḮߩᎿ੐߇ᕆࡇ࠶࠴ߢㅴࠎߢ޿ࠆ߇‫ޔ‬᷹ቯⵝ⟎ࠍ
⸳⟎ߔࠆࡒࡘࠝࡦߩ 4 ࡆ࡯ࡓࡐ࡯࠻‫ޔ‬ਛᕈሶߩ 23 ࡆ࡯ࡓ࡜ࠗࡦߩᢛ஻߽ᆎ߹ߞߚ‫ޕ‬ਛᕈሶታ㛎ⵝ⟎ߦߟ޿ߡߪ‫ޔ‬ᐔᚑ
14 ᐕᐲ߆ࠄߔߢߦᲤᐕⵝ⟎ឭ᩺ࠍฃߌઃߌਛᕈሶታ㛎ⵝ⟎⸘↹ᬌ⸛ᆔຬળߢክᩏߒߡ޿ࠆ߇㧔ࡎ࡯ࡓࡍ࡯ࠫෳᾖ㧕‫ߩߘޔ‬
߁ߜᑪ⸳੍▚ߩ⷗ㅢߒߩઃ޿ߡ޿ࠆⵝ⟎ߪ‫ޔ‬JAEA 2‫ޔ‬KEK 2
㨪4‫┹ޔ‬੎⊛ᄖㇱ⾗㊄ߦࠃࠆ߽ߩ 3‫⨙ޔ‬ၔ⋵ 2‫ߦࠇߘޔ‬
ࡆ࡯ࡓࡕ࠾࠲࡯㧛R&D ↪ߩ 1 บߢ޽ࠆ‫ޕ‬
J-PARC ߪᐔᚑ 19 ᐕᐲߢᑪ⸳ࠍ⚳ੌߒᐔᚑ 20 ᐕᐲ߆ࠄᣉ⸳ㆇ↪ߩࡈࠚ࡯࠭ߦ౉ࠆ‫౒߼ߚߩߘޕ‬หᑪ⸳ਥ૕ߢ޽ࠆ
KEK, JAEA ߇‫ޔ‬ᒁ߈⛯߈ᣉ⸳ࠍ౒หߢㆇ༡ߔࠆߚ߼ߩදቯࠍ✦⚿ߒ‫ޔ‬ᐔᚑ 18 ᐕ 2 ᦬ߦߪߎߩㆇ༡ࠍᜂ߁⚵❱ߢ޽ࠆ
‫ޟ‬J-PARC ࠮ࡦ࠲࡯‫ޠ‬㧔᳗ች࠮ࡦ࠲࡯㐳㧕ࠍਔᯏ㑐ߩታ⚵❱ߣߒߡ⸳⟎ߒߚ‫࡯࠲ࡦ࠮ߡߒߘޕ‬㐳ߩਅߦฦ⒳ߩᆔຬળ‫ޔ‬
ࡢ࡯ࠠࡦࠣࠣ࡞࡯ࡊ╬ࠍ⸳ߌߡ‫ޔ‬ㆇ↪ߦ㑐ࠊࠆ⻉໧㗴㧔ታ㛎⺖㗴౏൐࡮ክᩏߩ࿷ࠅᣇ‫ޔ‬೑↪⠪ฃߌ౉ࠇ૕೙‫࡜ࡈࡦࠗޔ‬ᢛ
஻╬㧕ࠍ♖ജ⊛ߦᬌ⸛ߒߡ޿ࠆ‫ޔߚ߹ޕ‬ਛᕈሶ࡮ࡒࡘࠝࡦߩᄖㇱ࡙࡯ࠩ࡯ߩჿࠍ෻ᤋߒߡ‫ޔ‬J-PARC㧛MLF ೑↪⠪ᙣ⺣
ળ㧔઒⒓㧕ߩ⸳┙Ḱ஻߇ߐࠇߡ޿ࠆ‫ޕ‬
·ρΑτȜΠକგ໤͈ಉ੬‫ا‬௖ഢ֊͂ͺκσέ͹Α‫ !ا‬Ƚࣞգࡄ‫͈͒ݪ‬ജ‫ٳ‬Ƚ
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ጊቶ
ୃ
ࠢ࡜ࠬ࡟࡯࠻᳓๺‛ߪ‫ᦨޔ‬ㄭ‫ޔ‬ᶏᐩߦᄙ㊂ߦၒ⬿ߐࠇߡ޿ࠆࡔ࠲ࡦ᳓๺‛߇ᧂ᧪ߩᄤὼࠟࠬ⾗Ḯߦߥࠆߎߣ߿‫ޔ‬࿾⃿᷷
ᥦൻߩේ࿃ߢ޽ࠆੑ㉄ൻ὇⚛ࠍᶏᐩ࿕ቯߔࠆߩߦ೑↪ߢ߈ࠆߎߣ߇ಽ߆ࠅ‫ޔ‬ᕆㅦߦᵈ⋡ࠍ㓸߼ߡ޿ࠆ‫߁ࠃߩߘޔߒ߆ߒޕ‬
ߥᔕ↪⊛⥝๧ߛߌߢߥߊ‫࠻࡯࡟ࠬ࡜ࠢޔ‬᳓๺‛ߪฎߊ߆ࠄ㊀ⷐߥၮ␆‛ᕈ⎇ⓥߩኻ⽎ߢ޽ߞߚ‫࠻࡯࡟ࠬ࡜ࠢޕ‬᳓๺‛߇⥝
๧ᷓ޿ߩߪ‫࠻ࠬࠥޔ‬ಽሶߩ㈩ะή⒎ᐨߣߣ߽ߦ‫ߩ࠻ࠬࡎޔ‬᳓ಽሶ߇޿ࠊࠁࠆ‫ޟ‬᳖ߩⷙೣ‫ࠍޠ‬ḩߚߒߥ߇ࠄ㈩ะή⒎ᐨߒߡ
޿ࠆߎߣߢ޽ࠆ‫ޕ‬
ᚒ‫ޔߪޘ‬1980 ᐕઍᓟඨ߆ࠄᏗࠟࠬ᳓๺‛߅ࠃ߮ᄙᢙߩ᦭ᯏࠥࠬ࠻ಽሶ㧔THF, TMO, EO, acetone ߥߤ㧕ߩࠢ࡜ࠬ࡟࡯
࠻᳓๺‛ߩᾲኈ㊂‫⺃ޔ‬㔚₸‫ޔ‬ਛᕈሶ࿁᛬ࠍ᷹ቯߒ‫ޔ‬᳓ಽሶߪ᳖ߣห᭽ߦࠟ࡜ࠬォ⒖ࠍ⚻ߡಓ⚿ߔࠆߎߣ‫࠻ࠬࠥޔ‬ಽሶߪૐ
᷷߹ߢ㊂ሶജቇ⊛ߥ࿁ォㆇേࠍߒߡ޿ࠆߎߣࠍ⷗޿ߛߒߚ‫౐ޔߚ߹ޕ‬ᣇ᥏᳖ߢⴕߞߚࠃ߁ߦ‫⹜ޔ‬ᢱߦ᳓㉄ൻࠞ࡝࠙ࡓ
㧔KOH㧕ࠍਇ⚐‛ߣߒߡ 0.1mol/dm3 ⒟ᐲ࠼࡯ࡊߔࠆߎߣߦࠃࠅ‫ޔ‬᳓ಽሶߩᦨ㈩ะㆇേࠍᵴᕈൻߒ‫ޔ‬⒎ᐨൻ⋧ォ⒖ࠍᒁ
߈⿠ߎߔߎߣߦᚑഞߒߚ‫⋧ߩߎޕ‬ォ⒖ߢߪ‫ޔ‬᳓ಽሶߣࠥࠬ࠻ಽሶߩਔ⠪߇หᤨߦ㈩ะ⒎ᐨൻߔࠆ‫ޕ‬
ᦨㄭߪ‫⚿ޔ‬᥏ߩࠢ࡜ࠬ࡟࡯࠻᳓๺‛ࠍ㔌ࠇ‫ޔ‬ૐ᷷⫳⌕ᴺߢ↢ᚑߒߚࠕࡕ࡞ࡈࠔࠬ⁁ᘒߩࠢ࡜ࠬ࡟࡯࠻᳓๺‛ࠍ⎇ⓥߒߡ
޿ࠆ‫ࠬࠔࡈ࡞ࡕࠕޕ‬᳓๺‛ߪ‫ޔ‬ㅢᏱߢߪṁߌߥ޿ṁ⾰㧔଀߃߫Ꮧࠟࠬ㧕ߩỚෘ᳓ṁᶧࠟ࡜ࠬߣ⠨߃ࠆߎߣ߽ߢ߈‫ߊోޔ‬ᣂ
ߒ޿࠲ࠗࡊߩ᳓ṁᶧ㧔⇹᳓ᕈ᳓ṁᶧ㧫㧕ߩࠟ࡜ࠬ⎇ⓥࠍน⢻ߦߒߡ޿ࠆ‫ ߦߢ߹ࠇߎޕ‬Ar, Xe, SF6, CD4 ߩࠕࡕ࡞ࡈࠔࠬ᳓
๺‛ߦߟ޿ߡ‫ޔ‬ਛᕈሶ࿁᛬߆ࠄߘߩዪᚲ᭴ㅧࠍ᣿ࠄ߆ߦߔࠆߣߣ߽ߦ‫ޔ‬㕖ᒢᕈᢔੂ߆ࠄࠕࡕ࡞ࡈࠔ᳖ࠬߢ⷗ࠄࠇߚ 6meV
એਅߩૐࠛࡀ࡞ࠡ࡯ബ⿠ᒝᐲ߇ࠥࠬ࠻ỚᐲߩჇട޽ࠆ޿ߪࠥࠬ࠻ಽሶࠨࠗ࠭ߩჇᄢߣߣ߽ߦ㗼⪺ߦᷫዋߔࠆߎߣࠍ⷗޿ߛ
ߒߚ‫⎇ޕ‬ⓥળߢߪ‫ޔ‬એ਄ߩ⚿ᨐߩ᭎⇛ࠍ⸃⺑ߔࠆߣߣ߽ߦ‫⎇ߩߢ߹ࠇߎޔ‬ⓥ߇㜞࿶ਅߦ߅޿ߡ዁᧪ߤߩࠃ߁ߦ⊒ዷߒ߁ࠆ
߆ߦߟ޿ߡ߽ㅀߴߚ޿‫ޕ‬
ࣞգ‫͈ئ‬କȇಎ଻ঊ͈͒‫ܢ‬ఞ!
ᣣᧄේሶജ㐿⊒⎇ⓥᯏ᭴࡮㊂ሶࡆ࡯ࡓᔕ↪⎇ⓥㇱ㐷 ጊ ⧐ೣ
᳓ߪᚒ‫߽ᦨߡߞߣߦޘ‬㊀ⷐߥᶧ૕ߢ޽ࠅ‫ޔ‬᭽‫ߥޘ‬㕙߆ࠄ⎇ⓥ߇ߥߐࠇߡ޿ࠆ‫ޕ‬᳓ߪ‫ޔߚ߹ޔ‬᥉ㅢߩಽሶᕈᶧ૕ߣߪ㆑ߞ
ߚ․⇣ߥᕈ⾰ࠍᜬߟߎߣߢ߽⍮ࠄࠇߡ޿ࠆ‫ޔߪࠇߎޕ‬᳓ߦ᳓⚛⚿วߦࠃࠆ 4 ㈩૏ߩࡀ࠶࠻ࡢ࡯ࠢ᭴ㅧ߇ᱷߞߡ޿ࠆߚ߼
ߢ޽ࠆ‫ߥ߁ࠃߩߎޕ‬㓗㑆ߩᄙ޿᭴ㅧߪട࿶ߦࠃߞߡᄢ߈ߊᄌൻߔࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬ᚒ‫ߪޘ‬ᶧ૕㧔ᵹ૕㧕ߩ᳓ߩ X ✢࿁᛬
ࠍ‫ޔ‬᡼኿శᣉ⸳ SPring-8 ߩ BL14B1 ߩࠠࡘ࡯ࡆ࠶ࠢဳࡑ࡞࠴ࠕࡦࡆ࡞ࡊ࡟ࠬߢ⚂ 9GPa ߹ߢ‫ޔ‬BL04B1 ߩᎹ੗ဳࡊ࡟ࠬ
ࠍ↪޿ߡ⚂ 17GPa ߹ߢ᷹ቯߔࠆߎߣߦᚑഞߒߚ‫⚿ߩߘޕ‬ᨐ‫ ⚂ޔ‬4GPa ߹ߢߦ᳓ಽሶߩ㈩૏ᢙߪ 10 ⒟ᐲ߳ᕆỗߦ਄᣹ߒ‫ޔ‬
೰૕⃿ߢ⴫ߐࠇࠆࠃ߁ߥන⚐ߥᶧ૕ߩ᭴ㅧ߳ߣㄭߠߊߎߣࠍ⷗಴ߒߚ‫ޕ‬
X ✢࿁᛬ታ㛎ߢߪ‫ޔ‬㔚ሶ߇ 1 ୘ߒ߆ߥ޿᳓⚛ߪ߶ߣࠎߤ࿁᛬ߦነਈߒߥ޿‫ߦ․ޕ‬᳓ߢߪ㔚⩄⒖േߦࠃߞߡߐࠄߦ᳓⚛
਄ߩ㔚ሶ߇ዋߥߊߥߞߡ޿ࠆߣ⠨߃ࠄࠇࠆ‫⚛㉄⚛㉄ޔ߼ߚߩߘޕ‬㑆ߩേᓘಽᏓ㑐ᢙߒ߆ᓧࠆߎߣ߇ߢ߈ߥ޿‫ߪࠇߎޕ‬᳓
ߩ᭴ㅧࠍ⠨߃ࠆ਄ߢᦨ߽㊀ⷐߥ᳓⚛⚿วߦ㑐ߒߡ߶ߣࠎߤᖱႎ߇ᓧࠄࠇߥ޿ߎߣࠍᗧ๧ߔࠆ‫ߦࠇߎޕ‬ኻߒਛᕈሶ࿁᛬ߢߪ‫ޔ‬
᳓⚛ේሶᩭ߇ᄢ߈ߥᢔੂᢿ㕙Ⓧࠍᜬߟߚ߼‫ޔ‬᳓⚛ߦ㑐ߔࠆᖱႎࠍᓧࠆߎߣ߇ߢ߈ࠆ‫ޕ‬ታ㓙‫ޔ‬6.5GPa ߹ߢߩ᳓ߩਛᕈሶ࿁
᛬ታ㛎ߩ⚿ᨐ߇ᦨㄭႎ๔ߐࠇߚ‫ޔߪߢ⴫⊒ᧄޕ‬ᚒ‫ߩޘ‬᡼኿శታ㛎‫ᦨޔ‬ㄭႎ๔ߐࠇߚਛᕈሶታ㛎‫ࠆࠃߦࡦ࡚ࠪ࡯࡟ࡘࡒࠪޔ‬
㜞࿶ਅߩ᳓ߩ᭴ㅧ⎇ⓥߥߤࠍ⚫੺ߒ‫ޔ‬㜞᷷㜞࿶ਅߩ᳓ߩਛᕈሶ࿁᛬ߦࠃߞߡ૗߇ࠊ߆ࠆߩ߆ࠍㅀߴࠆ‫ޕ‬
16
ຕࠫએಎ͈໦ঊ‫ڐ‬८!
᣿ᴦᄢቇℂᎿቇㇱᔕ↪ൻቇ⑼ ᷓỈ ୶ሶ
ධᭂᄢ㒽ߪ‫ޔ‬᳖ᐥߣࠃ߫ࠇࠆᏂᄢߥ᳖ߩ႙ߢⷒࠊࠇߡ޿ࠆ‫ޕ‬᳖ᐥߪ‫ޔ‬㒠ࠅⓍ߽ߞߚ㔐߇࿶❗ߐࠇߡ಴᧪ߚ⚿᥏ߢ޽ࠆߚ
߼‫ޔ‬ᢙචਁᐕߩ㑆ߦ㔐ߣ౒ߦၸⓍߒߚ᭽‫ߥޘ‬ᚑಽࠍ⾂߃ߡ߅ࠅ‫ޔ‬ฎⅣႺߦߟ޿ߡߩ⾆㊀ߥᖱႎḮߣߥࠆ‫ޔ߫߃଀ޕ‬᳖ᐥ߆
ࠄជ೥ߒߚ᳖⹜ᢱߦ฽߹ࠇࠆⓨ᳇ᚑಽߩ⚵ᚑಽᨆߦࠃࠅ‫↥ޔ‬ᬺ㕟๮એ㒠ߩᄢ᳇ਛߩੑ㉄ൻ὇⚛ỚᐲჇട߿‫ ⚂ޔ‬10 ਁᐕ๟
ᦼߩ᳖ᦼ㧙㑆᳖ᦼࠨࠗࠢ࡞ߦ઻߁ᄢ᳇⚵ᚑߩᄌേ╬‫ޔ‬ฎⅣႺߦ㑐ߔࠆ㊀ⷐߥ⍮⷗߇ᓧࠄࠇߡ޿ࠆ‫ޕ‬
ߣߎࠈ߇ᦨㄭߦߥߞߡ‫ޔ‬ฎⅣႺߩᜰᮡߣߥࠆⓨ᳇ಽሶ߇‫ޔ‬㐳޿ᤨ㑆ࠍ߆ߌߡ᳖ᐥౝㇱࠍ᜛ᢔߒߡ޿ࠆߎߣ߇᣿ࠄ߆ߦ
ߥߞߚ[1,2]‫ޕ‬ಽሶ᜛ᢔߪ᳖ᐥਛߩⓨ᳇ಽሶߩಽᏓࠍᄌൻߐߖࠆߚ߼‫ޔ‬ជ೥ߒߚ᳖⹜ᢱ߆ࠄಽᨆߒߚⓨ᳇ᚑಽߩ⚵ᚑߪᱜ
⏕ߥㆊ෰ߩᄢ᳇⚵ᚑࠍ␜ߒߡ޿ߥ޿ߎߣߦߥࠆ‫ޕ‬᳖ᐥ᳖⹜ᢱ߆ࠄ‫ޔ‬ㆊ෰ߩᄢ᳇⚵ᚑߩᖱႎࠍᱜ⏕ߦ⺒ߺขࠆߚ߼ߦߪ‫ޔ‬ಽ
ሶ᜛ᢔߩࡔࠞ࠾࠭ࡓࠍ⸃᣿ߒ‫ߩߘޔ‬ᓇ㗀ࠍᛠីߒߥߊߡߪߥࠄߥ޿‫ޕ‬
ᧄ⎇ⓥߢߪ‫ޔ‬ಽሶേജቇ⸘▚ߦࠃࠅ‫ޔ‬᳖⚿᥏ਛߩಽሶ᜛ᢔߩࡔࠞ࠾࠭ࡓࠍ‫ޔ‬ේሶ࡮ಽሶ࡟ࡌ࡞ߩࡒࠢࡠߥⷞὐ߆ࠄ⸃߈
᣿߆ߘ߁ߣߔࠆ⎇ⓥࠍㅴ߼ߡ߈ߚ[3,4,5]‫⻠ᧄޕ‬Ṷߢߪ‫ߩߎޔ‬ᚑᨐࠍਛᔃߦ‫ޔ‬᳖⚿᥏ߦขࠅㄟ߹ࠇߚ᳇૕ಽሶߩ᜼േߣ‫ߎޔ‬
ߩ᜼േߦ⿠࿃ߔࠆ᳖ߩዪᚲ᭴ㅧߩ࠳ࠗ࠽ࡒࠢࠬߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬
[1] Tomoko Ikeda et al., Geophys. Res. Lett. 26 (1999) 91.
[2] Tomoko Ikeda-Fukazawa et al., J. Geophys. Res. 106 (2001) 17799.
[3] Tomoko Ikeda-Fukazawa et al., J. Chem. Phys. 117 (2002) 3886.
[4] Tomoko Ikeda-Fukazawa et al., Chem. Phys. Lett. 385 (2004) 467.
[5] Tomoko Ikeda-Fukazawa et al., Molec. Sim. 30 (2004) 973.
J-PARC ̤̫ͥͅΫȜθρͼϋ࠺୭͈࡛ે
㜞ࠛࡀᯏ᭴࡮ᄢᒝᐲ㓁ሶടㅦེ⸘↹ផㅴㇱ ␹ጊ ፏ
ടㅦེࠍ↪޿ߚࡄ࡞ࠬਛᕈሶḮߪ‫ޔ‬1960 ᐕઍᧃߦ᧲ർᄢේሶᩭℂቇ⎇ⓥᣉ⸳ࠍೋ߼ߣߒߡ㔚ሶടㅦེߢࠬ࠲࡯࠻ߒߡ
એ㒠‫☨ޔ‬࿖ࠕ࡞ࠧࡦ࠿⎇ⓥᚲ߿ᣣᧄߩ㜞ࠛࡀ࡞ࠡ࡯‛ℂቇ⎇ⓥᚲ㧔⃻ 㜞ࠛࡀ࡞ࠡ࡯ടㅦེ⎇ⓥᯏ᭴㧕‫⧷ޔ‬࿖ߩ࡜ࠩ
ࡈࠜ࡯࠼࡮ࠕ࠶ࡊ࡞࠻ࡦ⎇ⓥᚲ╬ߢ㓁ሶടㅦེࠍ↪޿ߚਛᕈሶḮ߇⊒ዷ‫⃻ޔ‬࿷ߪᰴ਎ઍߩᄢဳᣉ⸳߇☨࿖ߣ⧷࿖‫ޔ‬ᣣᧄߦ
߶߷หᤨᦼߦᑪ⸳ߐࠇࠆߣ޿߁࡙࠾࡯ࠢߥᤨᦼߦ޽ࠆ‫⻠ޕ‬Ṷߢߪ‫ޔ‬㜞ࠛࡀ࡞ࠡ࡯ടㅦེ⎇ⓥᯏ᭴ߣᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ
᭴߇౒ห㐿⊒ߒߡ޿ࠆᄢᒝᐲ㓁ሶടㅦེ㧔J-PARC㧕ߩ‛⾰࡮↢๮ታ㛎ᣉ⸳ߣߘߎߦ⸳⟎ߐࠇࠆਛᕈሶ࿁᛬ⵝ⟎ߦߟ޿ߡ
ㅀߴࠆ‫ޕ‬
‛⾰࡮↢๮ታ㛎ᣉ⸳ߦߪ 23 ᧄߩࡆ࡯ࡓࡐ࡯࠻ߦⵝ⟎ࠍ⸳⟎ߢ߈ࠆ‫ޔߪߢࡓ࡯࠴࠻ࠢࠚࠫࡠࡊޕ‬ᣉ⸳ቢᚑߩ 2008 ᐕࠍ
⋡ᜰߒ‫ޔ‬೑↪⠪߇ᒝߊᏗᦸߔࠆⵝ⟎ߩౝ߆ࠄ 10 บࠍㆬᛯߒ‫⸘⸳ߩߘޔ‬૞ᬺࠍⴕߞߡ߈ߚ‫৻ޕ‬ᣇ‫ޔ‬࿖ౝᄖ߆ࠄߩⵝ⟎ឭ᩺
߽ฃߌઃߌߡ߅ࠅ‫⃻ޔ‬࿷߹ߢߦ⨙ၔ⋵ࠍߪߓ߼ߣߒߚⶄᢙߩឭ᩺߇޽ࠆ‫ޔߪߢߎߎޕ‬ᣧᦼߩᑪ⸳߇ᦼᓙߐࠇࠆ࿁᛬ⵝ⟎ߦ
ߟ޿ߡ⚫੺ߔࠆ‫ޕ‬
(1) ᳢↪ోᢔੂⵝ⟎
KEK
㕖᥏⾰‫ޔ‬ᶧ૕‫⚿ޔ‬᥏╬ߩ᭴ㅧ⸃ᨆࠍⴕ߁ߚ߼ߩⵝ⟎ߢ‫ޔ‬ᢔੂ᭴ㅧ࿃ሶࠍ⋥ធࡈ࡯࡝ࠛᄌ឵ߒߡ‫ߦ࡞࠺ࡕޔ‬ଐࠄߥ޿᭴ㅧ⸃
ᨆࠍ♖ᐲ⦟ߊⴕ߃ࠆࠃ߁‫ޔ‬㕖Ᏹߦᐢ▸ߥᵄᢙⓨ㑆 Q=0.01A-1ޯ100A-1 ߩ᷹ቯࠍ৻᜼ߦⴕ߁‫ᦨޕ‬㜞ಽ⸃⢻ߪ d/dޯ0.3㧑⒟ᐲ‫ޕ‬
(2) ᧚ᢱ᭴ㅧ⸃ᨆⵝ⟎
⨙ၔ⋵
ᄙ⚿᥏⹜ᢱߩ⚿᥏᭴ㅧ⸃ᨆࠍਛᔃߦ࠽ࡁ᭴ㅧ‫ޔ‬ዪᚲ᭴ㅧ⸃ᨆ‫⸃ߩ╬ࡖ࠴ࠬࠠ࠹ޔ‬ᨆࠍⴕ߁ⵝ⟎‫ᦨޕ‬㜞ಽ⸃⢻ d/dޯ0.15㧑
ߢ޽ࠆ‫ޕ‬0.5cc ߩ⹜ᢱߢ޽ߞߡ߽ 5 ಽ㑆ߩౝߦචಽߥ⛔⸘ߩ࡝࡯࠻ࡌ࡞࠻⸃ᨆ߇น⢻ߥ࿁᛬࠺࡯࠲ࠍᓧࠆߎߣ߇น⢻ߢ޽ࠆ‫ޕ‬
(3) ⿥㜞ಽ⸃⢻☳ᧃ࿁᛬ⵝ⟎
KEK
ESRF ߿ SPring-8 ╬ߩ㜞ノᐲ᡼኿శ☳ᧃ࿁᛬⸘ߢታ⃻ߒߡ޿ࠆಽ⸃⢻ d/d = 0.03%ࠍታ⃻ߔࠆ਎⇇ᦨ㜞ߩಽ⸃⢻ࠍᜬߟ
☳ᧃ࿁᛬ⵝ⟎‫ޕ‬ᒝᐲ࡮ಽ⸃⢻ߩὐߢ㜞ノᐲ᡼኿శ X ✢ߣߩ⋧⵬ᕈࠍ⌀ߦታ⃻ߢ߈ࠆ‫ޕ‬
(4) ᱷ⇐ᔕജ᷹ቯⵝ⟎
ਛᕈሶߩㅘㆊᕈࠍ೑↪ߒߡ᭴ㅧ᧚ᢱߩౝㇱߩᱡߺಽᏓࠍ᷹ቯߔࠆⵝ⟎ߢ޽ࠆ‫ޕ‬1mm3 ߩࠥ࡯ࠫࡏ࡝ࡘ࡯ࡓ
᷹ⷰㇱ૏ኈ㊂ࠍ‫ޔ‬
10-4ޯ10-5 ߩᱡߺ᷹ቯ♖ᐲߢ‫ޔ‬10 ಽ㑆ߦ᷹ቯ߇น⢻ߢ޽ࠆ‫ߩ⟎ⵝޕ‬᭴ㅧߪ㜞࿶ਅ᭴ㅧ⸃ᨆⵝ⟎ߣ౒ㅢߔࠆὐ߽ᄙ޿‫ޕ‬
17
H2O ice ͈೩‫أ‬௖ഢ֊̷͈͈ાρζϋ໦࢕༹ͥ͢ͅ۷ख़
㒐ⴡᄢቇᩞ࡮ᔕ↪ൻቇ⑼
ศ᧛ ᐘᶈ
ˍȅ͉̲͛ͅ!
⦟ߊ⍮ࠄࠇߡ޿ࠆࠃ߁ߦ H2O ߩ⋧࿑ߪⶄ㔀ߢ‫⃻ޔ‬࿷߹ߢߦḰ቟ቯߥ߽ߩࠍ฽߼ߡ 15 ⒳㘃એ਄߽ߩ⇣ߥࠆ⋧߇޽ࠆߎ
ߣ߇ႎ๔ߐࠇߡ޿ࠆ[1-4]‫ᦨޕ‬ㄭߩ࠻ࡇ࠶ࠢࠬߩ৻ߟߣߒߡ‫ޔ‬᳖ V ߣ VI ⋧ߩߘࠇߙࠇߩ⒎ᐨ⋧ߣߒߡ Salzmann ࠄ߇ᣂ
ߚߦ᳖ XIII, XIV ⋧ࠍ⊒⷗ߒߚߎߣ߇᜼ߍࠄࠇࠆ[4]‫ޕ‬Ḱ቟ቯ᳖ߦߟ޿ߡߪ‫ޔ‬Mishima ࠄ[5]ߦࠃࠆᏱ࿶᳖ Ih ߆ࠄ㜞ኒᐲ㕖
᥏⾰᳖(HDA)߳ߩォ⒖ߩ⊒⷗ߦࠃࠅ‫ޔ‬H2O ߩ㕖᥏⾰᳖ߦߪૐኒᐲ㕖᥏⾰᳖(LDA)ߣวࠊߖߡዋߥߊߣ߽ 2 ⒳㘃߇ሽ࿷ߔ
ࠆߎߣߦߥࠆ‫ޕ‬ട߃ߡᄢᄌ⥝๧ᷓ޿੐ታߪ‫ޔ‬᷷ᐲ 120-140K ઃㄭߦ߅޿ߡߪ‫ޔ‬LDA ߣ HDA ߩ㑆ߢ࿶ജᄌൻߦࠃࠅนㅒ
ߦ⋧ォ⒖ߔࠆߎߣߢ޽ࠆ[6]‫ߩࠄࠇߎޕ‬੐ታ߆ࠄ‫
ࠆࠁࠊ޿ޔ‬ㆊ಄ළ᳓ߩૐ᷷⇣Ᏹᕈࠍᶧ૕㧙ᶧ૕⋧ォ⒖઒⺑߆ࠄ⺑᣿ߔ
ࠆ⹜ߺ߽޽ࠆ‫[ޕ‬7]
ߎߩࠃ߁ߥ⢛᥊ߦ߽ߣߠ߈‫ޔ‬ᚒ‫ߪޘ‬ૐ᷷᧦ઙਅߢߩḰ቟ቯ᳖ࠍ฽߼ߚ᳖ߩ⋧ߩ⹦⚦ߦߟ޿ߡ߹ߛ߹ߛ⺞ߴࠆ૛࿾߇޽ࠆ
ߣ⠨߃⎇ⓥࠍⴕߞߚ‫ޔߪߢߎߎޕ‬ਥߣߒߡߘߩ႐࡜ࡑࡦಽశᴺࠍ↪޿ߡᓧࠄࠇߚ⚿ᨐߩ޿ߊߟ߆ࠍ⚫੺ߔࠆ‫ޕ‬
ˎȅ৘ࡑ༹༷!
ߘߩ႐㜞࿶࡜ࡑࡦࠬࡍࠢ࠻࡞ߪ‫ޔ‬㗼ᓸ࡟࡯ࠩ࡯࡜ࡑࡦಽశశᐲ⸘ࠍ↪޿‫
࡯ࠩ࡯࡟ࡦࠝࠗࡦࠧ࡞ࠕޔ‬514.5nm, 350mWࠍ
ബ⿠శḮߣߒߡᓟᣇᢔੂᴺߢ᷹ቯߒߚ‫ޕ‬࿶ജ⊒↢ⵝ⟎ߣߒߡ޿ࠊࠁࠆ Mao-Bell type ߩ࠳ࠗࡗࡕࡦ࠼ࠕࡦࡆ࡞࠮࡞ࠍ૶↪
ߒߚ‫ޕ‬
ˏȅࠫ‫͈ض‬તٚ!
4.2!ࣞգຕ ice VII’ & ice VIII ͈૧̱̞ࢹ௮ഢ֊ȉ!
᳖ VIII ⋧ࠍᶧ૕⓸⚛᷷ᐲ⒟ᐲߩૐ᷷ਅߢ৻᳇࿶ߦ࿁෼ߔࠆߣ‫ޔ‬
㧔߅ߘࠄߊ 2-3GPa ޽ߚࠅߢォ⒖߇߅ߎࠅ㧕ࠝ࡝ࠫ࠽
࡞ߩ᳖ VIII ߣߪዋߒ᭴ㅧߩ⇣ߥࠆ߽ߩ߇ߢ߈ࠆน⢻ᕈ߇ႎ๔ߐࠇߡ޿ࠆ[8]‫ޕ‬඙೎ߩߚ߼ߦ‫ߩߎޔ‬᳖ߪ VIII’ ⋧ߣ๭߫ࠇߡ
޿ࠆ‫ޕ‬
ᚒ‫ޔߪޘ‬᳖ VIII ⋧߆ࠄ޿ࠊࠁࠆኻ⒓᳖ X ⋧ߦォ⒖ߔࠆ߹ߢߩ㑆ߦ߅޿ߡ‫ᧄޔ‬ᒰߦ቟ቯߥ⋧ߢ޽ࠆߩ߆ߦ⥝๧ࠍ߽ߞ
ߡታ㛎ࠍⴕߞߚ‫ࡦࡑ࡜ޕ‬ಽశᴺߣ᡼኿శ X ✢
APSࠍ↪޿ߡ‫ޔ‬80K ߢ⚂ 20GPa ߹ߢട࿶ߔࠆߎߣߦࠃࠅߘߩ႐᷹ቯࠍ
⹜ߺߚ‫⚿ߩߘޕ‬ᨐ‫ߦ․ޔ‬ૐᝄേ࡜ࡑࡦࠬࡍࠢ࠻࡞ߦ߅޿ߡ 10GPa ߢ TzA1g+Tx,yEg lattice mode ߇ᶖᄬߒ‫ ⚂ޔ‬14GPa
ઃㄭߢ⓭ὼᣂߚߥࡃࡦ࠼߇಴⃻ߔࠆ੐ࠍ⷗಴ߒߚ‫[ޕ‬9]߹ߚߎࠇࠄߪ XRD ߩ⚿ᨐߣ߽๭ᔕߒߡ޿ߚ‫ޔߦࠄߐޕ‬᳖ VII’
⋧ߦ߅޿ߡ߽ห᭽ߥᄌൻ߇⿠ߎࠆߎߣࠍ⏕⹺ߒߡ޿ࠆ‫[ޕ‬10]
4.3!ice VII’̥ͣ೩ྟഽͺκσέ͹Αຕ(LDA)͈͒ೄ୪ഢ֊!
వߦ Hemley ࠄ[1]ߪૐ᷷ߢ᳖ Ih ߆ࠄォ⒖ߒߚ HDA ࠍߘߩ߹߹ട࿶ߒ⛯ߌߡ޿ߊߣ᳖ VII’ ⋧ߦォ⒖ߔࠆߎߣࠍ⊒⷗
ߒߚ‫ߒ߽ޔߢࠈߎߣޕ‬᷷ᐲࠍ৻ቯߦ଻ߜߥ߇ࠄߎߩ᳖ VII’ ⋧ߩ࿶ജࠍᛮ޿ߡ޿ߊߣߤ߁ߥࠆߩ߆ߦߪ⥝๧߇߽ߚࠇࠆ‫ޕ‬
᳖ VII’ ⋧ߩ߹߹৻᳇࿶ߦ࿁෼ߢ߈ࠆߩ߆‫⋧ߪ޿ࠆ޽ޔ‬ォ⒖߇⿠߈ࠆߩߛࠈ߁߆㧫߽ߒ‫ ߣࠆߔߣࠆ߈⿠ޔ‬HDA ⋧ߦォ
⒖ߔࠆߩ߆‫ޔ‬೎ߩ⋧ߥߩ߆‫ޕ‬
ᧄ⎇ⓥߢߪ‫ޔ‬᷷ᐲࠍ 135K ߦ଻ߜߥ߇ࠄ᳖ VII’ ⋧߆ࠄ࿶ജࠍᷫ࿶ߒߡ޿ߊㆊ⒟ߩߘߩ႐࡜ࡑࡦࠬࡍࠢ࠻࡞ᄌൻࠍⷰ
ኤߒ‫ޔ‬᳖ߩ⋧ᄌൻࠍ⺞ߴߚ‫ޕ‬ᓧࠄࠇߚ⚿ᨐ߆ࠄォ⒖ߒߚ⋧ߪ LDA ߢ޽ࠆߎߣ߇ಽ߆ߞߚ‫⋧ߩߎޔߦࠄߐޕ‬ォ⒖᜼േߪ
ォ⒖ߩㆊ⒟ߢ೎ߩਛ㑆૕߇ߢ߈ࠆߩߢߪߥߊ‫ޔ‬᳖ VII’ߣ LDA ߩ mixture ߇ߢ߈‫ߟ߆ޔ‬ਇㅪ⛯ߦ⿠ߎࠆߎߣ߆ࠄ৻ᰴォ
⒖ like ߢ޽ࠆߎߣࠍ␜ߒߡ޿ࠆ‫[ޕ‬11]
4.4!ഩٜৗକဣ‫ס‬ಎ͈ຕ͈ࣞգ௖ഢ֊࡛ય!
Ᏹ࿶ਅߢ㔚⸃⾰᳓ṁᶧࠍ಄ළߒߡಓࠄߖߚ႐ว‫ޔ‬ㅢᏱ࿕ṁ૕ߪᒻᚑߖߕ‫ޔ‬᳓⚛⚿วߒ߿ߔ޿ㇱಽߩ᳓ߩߺ߇⚿᥏ࠍᒻ
ᚑߒ‫ޔ‬Ⴎࠍ฽߻ㇱಽߩ᳓ߪ᳖ߣߥࠄߕߦ᳖߆ࠄಽ㔌ߔࠆ‫ޕ‬ᚒ‫ߩߎޔߪޘ‬㔚⸃⾰᳓ṁᶧਛߩ᳖߽ห᭽ߦ‫ޔ‬ട࿶ߦࠃࠅࠕࡕ
࡞ࡈࠔࠬ⁁ᘒߦߥࠆน⢻ᕈ߇㜞޿ߣ⠨߃ߚ‫߽߆ߒޕ‬㔚⸃⾰ߦࠃߞߡ‫ߩࠢ࡞ࡃޔ‬᳖ߩࡀ࠶࠻ࡢ㧙ࠢ᭴ㅧ⥄૕߽޽ࠆ⒟ᐲ⎕
უ‫ߣࠆ޿ߡࠇߐੂߪ޿ࠆ޽ޔ‬⠨߃ࠄࠇࠆߩߢ‫ޔ‬᳖ Ih ߆ࠄ HDA ߦォ⒖ߔࠆ႐วߩ࿶ജࠃࠅ߽ૐ޿࿶ജߢ⿠߈ࠆߩߢߪߥ
޿߆ߣ੍ᗐߒߚ‫ޕ‬
ᧄ⎇ⓥߢߪ‫ޔ‬಄ළߦࠃࠅኈᤃߦࠟ࡜ࠬᒻᚑߔࠆ㔚⸃⾰᳓ṁᶧߩ㧝ߟߢ޽ࠆႮൻ࡝࠴࠙ࡓ᳓ṁᶧߣ‫ߪߣࠇߘޔ‬ኻᾖ⊛ߦㅢᏱ
ߩ಄ළㅦᐲߢߪࠟ࡜ࠬൻᒻᚑߒߦߊ޿Ⴎൻࠞ࡝࠙ࡓ᳓ṁᶧਛߦᒻᚑߐࠇࠆߘࠇߙࠇߩ᳖ߦߟ޿ߡ‫ޔ‬ᶧ૕⓸⚛᷷ᐲߢ⚂ 1 GPa
⒟ᐲ߹ߢട࿶ߔࠆߎߣߦࠃࠅ‫ޔ‬ฦ⹜ᢱ᳓ṁᶧਛߩ᳖ߩ⋧ᄌൻࠍ⺞ߴߚ‫ޕ‬ᓧࠄࠇߚ⚿ᨐߪᄢᄌ⥝๧ᷓߊ‫ޔ‬Ⴎߩ㆑޿ߦࠃࠅᓧ
ࠄࠇࠆ⚿ᨐ߇ోߊ⇣ߥߞߚ‫ޕ‬Ⴎൻ࡝࠴࠙ࡓ᳓ṁᶧਛߩ᳖ߩ႐ว‫ޔ‬ૐ᷷ߢ⚿᥏ൻߐߖߡട࿶ߒߚᤨߦṁᶧਛߦ↢ᚑߒߚ᳖ߪ‫ޔ‬
᳖ Ih ߆ࠄ HDA ߳ߩォ⒖ߩ႐วߣห᭽ߦࠕࡕ࡞ࡈࠔࠬൻߔࠆߎߣ߇ಽ߆ߞߚ߇‫ޔ‬ォ⒖࿶ജ߇᳖ Ih ߆ࠄ HDA ߳ォ⒖ߔࠆߣ
߈ߩ࿶ജߩ⚂ඨಽߢ޽ࠆ⚂ 0.5GPa ߢ޽ߞߚ[12]‫ޔ߇ࠈߎߣޕ‬Ⴎൻࠞ࡝࠙ࡓ᳓ṁᶧਛߦᒻᚑߐࠇࠆ᳖ߩ႐วߪ‫ޔ‬0.8GPa
ઃㄭߦ߅޿ߡ᳖ VII’ߦォ⒖ߔࠆߎߣ߇ಽ߆ߞߚ[13]‫ޕ‬
18
४ࣉ໲ࡃ!
[1] R. J. Hemley, et al., Nature, 338, 638 (1989).
[2] C. Lobban, et al., Nature, 391, 268 (1998).
[3] T. Kawamoto, et al., J. Chem. Phys., 120, 5867 (2004).
[4] C. G. Salzmann, et al., Science, 311, 1758 (2006).
[5] O. Mishima, et al., Nature, 310, 393 (1984).
[6] O. Mishima, J. Chem. Phys., 100, 5910 (1994).
[7] O. Mishima, H. E. Stanley, Nature, 396, 329 (1998).
[8] J. M. Besson, et al., Phys. Rev. B, 55, 11191 (1997).
[9] Y. Yoshimura, et al., J. Chem. Phys., 124, 024502 (2006).
[10] S. T. Stewart, et al., Annual APS March Meeting 2004.
[11] Y. Yoshimura, et al., Chem. Phys. Lett., 420, 503 (2006).
[12] Y. Yoshimura, H. Kanno, J. Phys. Cond. Matt., 14, 10671 (2002).
[13] Y. Yoshimura, et al., Chem. Phys. Lett., 400, 511 (2004).
ຕ̤͍͢·ρΑτȜΠΧͼΡτȜΠ͈‫ޑ‬ညഩ଻! Ƚຕഛఘඤ໐͈ίυΠϋ͈‫ݷ‬൲Ƚ
ේሶജᯏ᭴
ᷓỈ
⵨
㜞࿶ਅߩ᳖⚿᥏ߩࡊࡠ࠻ࡦߪ᷷ᐲࠍਅߍࠆߣ⋥ߜߦ⒎ᐨൻߔࠆ‫ޔ ߇ࠈߎߣޕ‬ᄢ᳇࿶ਅߦ߅ߌࠆ‫ޟ‬ㅢᏱ‫ߩޠ‬᳖ߩࡊࡠ࠻
ࡦߪ‫ޔ‬㕖Ᏹߦૐ޿᷷ᐲߦ߅޿ߡ߽‫ޔ‬ታ㛎ቶߩᤨ㑆ࠬࠤ࡯࡞ߢߪή⒎ᐨߥ㈩⟎ࠍ⛽ᜬߔࠆ‫ޕ‬૗᡿ߥࠄ‫ߩࡦ࠻ࡠࡊޔ‬⒎ᐨൻߪ
᷹ቯਇน⢻ߥ߶ߤ✭ᘟߛ߆ࠄߢ޽ࠆ‫ޔߢߎߘޕ‬ᰴߩ໧㗴߇⎇ⓥ⠪ࠍ㝯ੌߒ⛯ߌߡ߈ߚ‫ޕ‬හߜ‫ޔ‬ᒝ⺃㔚ᕈߩࡊࡠ࠻ࡦ⒎ᐨ᳖
ߪ᳖ߩૐ᷷⋧ߣߒߡሽ࿷ߔࠆߩ߆ߢ޽ࠆ‫ޕ‬ర᧪‫ߩߎޔ‬໧㗴ߪ࿕૕‛ℂቇߩಽ㊁ߢ⼏⺰ߐࠇߡ޿ߚ߇‫ᦨޔ‬ㄭ‫ޔ‬ᄤᢥቇߩಽ㊁
ߢ߽⹤㗴ߣߥߞߚ‫ޔߪࠇߘޕ‬౵₺ᤊߦᒝ⺃㔚૕ߩ᳖߇ሽ࿷ߔࠆ߆ุ߆ߢ޽ࠆ‫ޕ‬
ᧄ⎇ⓥળߢߪ‫ޔ‬ᒝ⺃㔚૕ߩ᳖߇቟ቯ⋧ߢ޽ࠆߎߣࠍ⏕ታߦ␜ߒߚ᭴ㅧ⊛⸽᜚ࠍਛᕈሶ࿁᛬ߩታ㛎߆ࠄ␜ߔ‫ޕ‬ਛᕈሶߩታ
㛎߆ࠄ‫߽ᦨޔ‬ዋߥ޿࡟ࡌ࡞ߩਇ⚐‛ߩ࠼࡯ࡇࡦࠣߦࠃߞߡᦨᄢߩᒝ⺃㔚૕ߩ᳖߇⊒↢ߔࠆߎߣ߇ࠊ߆ߞߚ‫⚿ߩߎޕ‬ᨐߪ‫ޔ‬
ዉ౉ߒߚਇ⚐‛߇ࡊࡠ࠻ࡦߩ⒎ᐨൻࠍታ㛎ቶߩᤨ㑆ࠬࠤ࡯࡞߹ߢ⍴❗ߐߖࠆ⸅ᇦߣߒߡ૞↪ߒߡ޿ࠆߎߣࠍᡰᜬߔࠆ߽ߩ
ߢ޽ࠆ‫ޔߚ߹ޕ‬ਛᕈሶ࿁᛬ታ㛎ߩᄖᝌߪ‫ޔ‬᥉ㅢߩ᳖߇ᄤᢥቇ⊛ᤨ㑆ࠬࠤ࡯࡞ߢᒝ⺃㔚૕ߩ᳖ߦᄌൻߔࠆߎߣࠍ␜ߔ‫ޕ‬ᓥߞ
ߡ‫ޔ‬ቝቮߦߪᒝ⺃㔚૕ߩ᳖߇ሽ࿷ߒߡ߅ࠅ‫ߪࠇߘޔ‬ᖺᤊតᩏߣᄤ૕᷹ⷰߢ⊒⷗ߢ߈ࠆߣᦼᓙߐࠇࠆ‫ޕ‬ᄖᖺᤊ߿ⴡᤊߩ৻ㇱ‫ޔ‬
ࠞࠗࡄ࡯ࡌ࡞࠻‫ޔ‬ಽሶ㔕╬ߦᒝ⺃㔚૕ߩ᳖߇ሽ࿷ߔࠆߛࠈ߁‫ޕ‬
౵₺ᤊߦߟ޿ߡ⹦ߒߊ⸥ㅀߔࠆߣ‫ޔ‬ᄤ૕⴫㕙ߩ᳖ߪ᷷ᐲ߇௖߆ߦૐߔ߉ࠆ߇‫ޔ‬ᄤ૕ౝㇱߩ᳖ߪᒝ⺃㔚૕߳ߩᄌൻߦㆡߔ
ࠆ᧦ઙࠍ᦭ߒߡ޿ࠆ‫ޕ‬౵₺ᤊߢߪᄤ૕ౝㇱߩ᳖߇ᵹേߦࠃࠅ⴫㕙߳⒖േߒߡ޿ࠆߎߣ߇ᜰ៰ߐࠇߡ߅ࠅ‫⋧ޔߟ߆ޔ‬ォ⒖ὐ
ࠃࠅ᷷ᐲ߇਄᣹ߔࠆน⢻ᕈ߇߶߷ߥ޿ߩߢ‫ޔ‬౵₺ᤊߩ⴫㕙ߦሽ࿷ߔࠆ᳖߇ᒝ⺃㔚૕ߢ޽ࠆน⢻ᕈߪ㜞޿‫ޕ‬
ຕഛఘ͈ඤ໐ၠ൲
਻Ꮊᄢ࡮ℂ
ਭ଻ ෹᣿
ㄭᐕ‫ޔ‬ᄥ㓁♽ౝߩߺߥࠄߕ‫♽ޔ‬ᄖᖺᤊߩਛߦ߽᳖ࠍਥᚑಽߣߔࠆ‫ޟ‬᳖ᄤ૕‫߇ޠ‬ᢙᄙߊሽ࿷ߔࠆߎߣ߇᣿ࠄ߆ߦߥߞߡ߈
ߚ‫ߩߘޕ‬㝯ജߪ‫ੱޔ‬Ꮏⴡᤊតᩏ߿ฦ⒳᷹ⷰߦࠃߞߡ᣿ࠄ߆ߦߐࠇߟߟ޽ࠆ᳖ᄤ૕ߩᄙ᭽ᕈߢ޽ࠆ‫ޕ‬᳖ߩᵹേ․ᕈߪᄢ߈ߐ
߿ኒᐲߣਗࠎߢߘߩ᳖ᄤ૕ࠍ․ᓽߠߌࠆ㊀ⷐߥ‛ᕈߢ޽ࠅ‫ޔ‬ᄤ૕ౝㇱߩᾲャㅍߣ࠳ࠗ࠽ࡒࠢࠬࠍᡰ㈩ߒ‫ޔ‬᳖ᄤ૕ߩㅴൻ‫ޔ‬
ౝㇱ᭴ㅧ‫ޔ‬ౝㇱᶏߩ᦭ή‫⴫ޔ‬㕙࿾ᒻߩᄙ᭽ᕈ‫ޔ‬ầ᳤ജ߳ߩജቇ⊛ᔕ╵ߥߤࠍℂ⸃ߔࠆ߁߃ߢᔅⷐਇนᰳߥࡄ࡜ࡔ࡯࠲࡯ߢ
޽ࠆ‫ޔߦ⥸৻ޕ‬࿯ᤊߩ᳖ⴡᤊ Iapetus, Rhea ߿ Triton, Pluto
౵₺ᤊߥߤඨᓘ߇⚂ 700km ࠍ⿥߃ࠆ㧔ૐኒᐲ㧕᳖ᄤ૕ߢ
ߪ‫ߩߘޔ‬ౝㇱߦ᳖ߩ㜞࿶⋧߇ሽ࿷ߢ߈ࠆ᧦ઙ߇ታ⃻ߒߡ߅ࠅ‫ޔ‬Ganymede, Calisto, Titan ߥߤඨᓘ߇ 2500km ߦ㆐ߔࠆ
ࠃ߁ߥ᳖ᄤ૕ߩਛᔃᩭߢߪ‫ޔ‬Ice VII ߇ሽ࿷ߔࠆ࿶ജߦ㆐ߒߡ޿ࠆ‫ޔߚ߹ޕ‬Uranus
ᄤ₺ᤊ߿ Neptune
ᶏ₺ᤊߥߤᄥ
㓁♽ౝᏂᄢ᳖ᖺᤊߢߪෘ޿ᄢ᳇ߩߚ߼ߦ࿕૕ߩ᳖ߪሽ࿷ߒߥ޿ߣ⠨߃ࠄࠇࠆ߇‫♽ޔ‬ᄖᖺᤊߦߪᄤ₺ᤊࠃࠅ߽ዊߐ޿߇࿾⃿
ߩ㧡୚߶ߤߩ⾰㊂ࠍᜬߟ sub-Neptune-mass cool planets ߇⊒⷗ߐࠇߡ߅ࠅ [1, 2]‫ ߪߢߎߘޔ‬Ice VII ߇ਥⷐߥࡑࡦ࠻࡞
19
㋶‛ߣߥߞߡ޿ࠆߣ੍ᗐߐࠇࠆ‫ޕ‬᳖ߩ㜞࿶⋧ߩᵹേ․ᕈߪ‫ޔ‬Poirier (1982) [3]ߦઍ⴫ߐࠇࠆࠃ߁ߦߘߩ㊀ⷐᕈ߇એ೨߆ࠄ
ᜰ៰ߐࠇߡ߅ࠅ‫ߩߘޔ‬ᓟ‫ࠕࡕࡃ࡝ࠬࡦ࡟࡯ࡠޔ‬࿖┙⎇ߩ Durham ࠄߩࠣ࡞࡯ࡊ߇ਛᔃߣߥߞߡᲧセ⊛㜞ᔕജਅ‫ޔ‬ਥߦォ
૏ࠢ࡝࡯ࡊ㗔ၞߢߩ Ice VI ߹ߢߩ࡟ࠝࡠࠫ࡯߇᣿ࠄ߆ߦߐࠇߚ[4]‫ޔߒ߆ߒޕ‬ኻᵹㆇേߔࠆ᳖ᄤ૕ౝㇱߩᵹേᔕജߪᭂ߼
ߡૐ޿
0.1MPa એਅߣߐࠇߡ߅ࠅ‫ߪߢߎߘޔ‬೎ߩᵹേᯏ᭴߇ථ⿧ߔࠆน⢻ᕈ߇㜞޿㧔࿑㧝㧕‫ޕ‬
ᧄ⊒⴫ߢߪ‫ᦨޔ‬ㄭ Ice I ߅ࠃ߮ Ice II ߢ⋧ᰴ޿ߢ⊒⷗ߐࠇߚ
ૐᔕജਅߢථ⿧ߔࠆ᳖ߩᵹേᯏ᭴[5-7]ߣߘߩ᳖ᄤ૕ౝㇱ࠳ࠗ
࠽ࡒࠢࠬ߳ߩᗧ⟵[8-10]ߦߟ޿ߡ‫◲ޔ‬නߦ࡟ࡆࡘ࡯ߔࠆ‫ޕ‬૛⵨
߇޽ࠇ߫‫ߊోߛᧂޔ‬᣿ࠄ߆ߦߐࠇߡ޿ߥ޿ Ice VII ߩ࡟ࠝࡠ
ࠫ࡯ߦ㑐ߒߡ‫ޔ‬Deformation DIA (D-DIA)㜞࿶ᄌᒻⵝ⟎ߣ X
✢࿁᛬߽ߒߊߪਛᕈሶ࿁᛬ࠍ⚵ߺวࠊߖߚ႟ᕈᄌᒻታ㛎ߦߟ޿
ߡ‫◲ޔ‬නߦ⸅ࠇߚ޿‫ޕ‬
[1] Beaulieu et al., Nature 439, 437 (2006)
[2] Kerr, Science 311, 453 (2006)
[3] Poirier, Nature 299, 683 (1982)
[4] Durham et al., in Solar System Ices, 63-78 (1998)
[5] Goldsby & Kohlstedt, Scr. Mater. 37, 1399 (1997)
[6] Goldsby & Kohlstedt, J. Geophys. Res. 106, 11017 (2001)
[7] Kubo et al., Science 311, 1267 (2006)
[8] Pappalardo et al., Nature 391, 365 (1998)
[9] McKinnon, Geophys. Res. Lett. 26, 951 (1999)
[10] Sammonds, Science 311, 250 (2006)
΄ΑΧͼΡτȜΠ͈ࣞգհ೰଻͂௖ࡽैဥ
╳ᵄᄢ ࿾⃿ㅴൻ
ᐔ੗ ኼሶ‫৻⌀ ↰↸ޔ‬
↥✚⎇
ጊᧄ ૫ቁ‫ޔ‬Ꮉ᧛ ᄥ㇢
᧲ᄢ‛ᕈ⎇
౎ᧁ ஜᒾ
ࠟࠬࡂࠗ࠼࡟࡯࠻ߪ‫ޔ‬᳓ಽሶ߇᳓⚛⚿วߢᒻᚑߔࠆࠤ࡯ࠫ㧔ࡎࠬ࠻ߣ޿߁㧕ਛߦ‫ࠬࠟޔ‬ಽሶ߿ේሶ㧔ࠥࠬ࠻ߣ޿߁㧕߇
ౝ൮ߐࠇߚࠢ࡜ࠬ࡟࡯࠻ࡂࠗ࠼࡟࡯࠻ߣ‫ޔ‬᳖ߩᄙᒻ᭴ㅧߩ㓗㑆ߦࠥࠬ࠻߇ଚ౉ߒߚ filled ice ᭴ㅧဳߩࡂࠗ࠼࡟࡯࠻߇޽
ࠆ‫ޕ‬ㄭᐕߩ㜞࿶ታ㛎ߦࠃߞߡ‫ߩ࠻࡯࡟࠼ࠗࡂࠬࠟߩ࠻ࠬࠥߥ߹ߑ߹ߐޔ‬㜞࿶⋧ᄌൻ߇᣿ࠄ߆ߦߐࠇ‫ޔ‬࿶ജߣࠥࠬ࠻ࠨࠗ࠭
ଐሽߩࠟࠬࡂࠗ࠼࡟࡯࠻⋧ᄌൻߩ᭎ⷰ߇ႎ๔ߐࠇߡ޿ࠆ[1]‫ߩߎޕ‬ਛߢ‫[࠻࡯࡟࠼ࠗࡂࡦ࠲ࡔޔ‬2]ߣ᳓⚛ࡂࠗ࠼࡟࡯࠻ߪ㓙
┙ߞߚ㜞࿶቟ቯᕈࠍ␜ߒ‫࠻ࠬࡎޔ‬㧙ࠥࠬ࠻㑆ߩ⋧੕૞↪߇቟ቯᕈߦነਈߒߡ޿ࠆߎߣ߇੍᷹ߐࠇࠆ‫ޕ‬ᚒ‫৻ߩޘ‬ㅪߩ⎇ⓥߢ
ߪ‫ߦ࠻࡯࡟࠼ࠗࡂࡦ࠲ࡔޔ‬㑐ߒߡߪ‫ࡦࡑ࡜ޔ‬ಽశߦࠃߞߡ‫ࡦ࠲ࡔޔ‬ಽሶ߇㜞࿶ਅߢ㈩ะ⒎ᐨൻࠍ⿠ߎߒ‫⺃ߦࠇߎޔ‬ᒁߐࠇ
ߚ⋧੕૞↪߇㜞࿶቟ቯᕈࠍ଻⸽ߒߡ޿ࠆߎߣࠍ␜ߒߚ[3]‫ޔߚ߹ޕ‬filled ice ᭴ㅧဳߩ᳓⚛ࡂࠗ࠼࡟࡯࠻ߦ㑐ߒߡߪ‫ޔ‬᳓ಽ
ሶߩ૞ࠆࡈ࡟࡯ࡓࡢ࡯ࠢߣ᳓⚛ಽሶߩ㑆ߦ⋧੕૞↪߇↢ߓߡ޿ࠆߎߣࠍ⷗಴ߒߚ[4]‫ߩࠄࠇߎޕ‬ಽሶ㑆⋧੕૞↪ߩ߶߆‫ޔ‬
᳓⚛⚿วߩኻ⒓ൻߩࠃ߁ߥ‫ޔ‬᳓ಽሶ߇૞ࠆࡈ࡟࡯ࡓࡢ࡯ࠢ⥄りߩၷ࿕ൻ߽ࠟࠬࡂࠗ࠼࡟࡯࠻ߩ㜞࿶቟ቯᕈߦነਈߔࠆ㊀ⷐ
ߥⷐ⚛ߣ⠨߃ࠄࠇࠆ‫⃻ޕ‬࿷‫⋧ߩࠄࠇߎޔ‬੕૞↪ߪਥߦಽశቇ⊛ᣇᴺߦࠃߞߡ᝝߃ࠄࠇߡ޿ࠆ߇‫ޔ‬ਛᕈሶ࿁᛬ߦࠃࠅ᳓⚛ߩ
૏⟎߇⋥ធ᳞߼ࠄࠇࠇ߫‫ࠅࠃߪ⺰⼏ߩࠄࠇߎޔ‬᣿⏕ߦߥࠅ‫ޔߚ߹ޔ‬ᣂߒ޿‛ᕈ⎇ⓥ߇ዷ㐿ߐࠇࠆߣᦼᓙߐࠇࠆ‫ޕ‬
[1] H. Hirai et al., J. Phys. Chem. Solid, .65, 1555-1559 (2004).
[2] H. Hirai et al., Phys. Rev. B, 68 [17], 172102-1㧙172102-4 (2003).
[3] H. Hirai et al., Amer. Mineral., 91,826-830 (2006).
[4] H. Hirai et al., J. Phys. Chem. B (2006) (in press).
20
Theory and computation of hydrous minerals and melt under high pressure
ᗲᇫᄢ࿾⃿ᷓㇱ⎇
࿯ደ ථਭ
㊂ሶജቇߩၮᧄේℂ߆ࠄ಴⊒ߔࠆ╙৻ේℂ⸘▚ᴺߪ‫⚻ޔ‬㛎ࡄ࡜ࡔ࡯࠲ࠍ৻ಾ↪޿ߥ޿ߦ߽߆߆ࠊࠄߕ᭽‫߿⾰‛ߥޘ‬ൻቇ
⚿วߦ᳢↪⊛ߦㆡ↪น⢻ߥߎߣ߆ࠄ‫ߦ․ޔ‬ታ㛎߇࿎㔍ߥᭂ┵᧦ઙਅߩ‛ᕈ⎇ⓥߦ߅޿ߡᭂ߼ߡ᦭↪ߥᣇᴺߢ޽ࠆ‫ޕ‬ᚒ‫ߩޘ‬
ࠣ࡞࡯ࡊߢߪ‫৻╙ߩߎޔ‬ේℂ㔚ሶ⁁ᘒࠪࡒࡘ࡟࡯࡚ࠪࡦߩᣇᴺࠍ↪޿ߡ࿾⃿ᷓㇱ‛⾰‫ޔ‬฽᳓ࠤࠗ㉄Ⴎ‫ߩߤߥޔࡑࠣࡑޔ‬㜞
᷷㜞࿶‛ᕈߦ㑐ߔࠆ⎇ⓥࠍⴕߞߡ޿ࠆ‫⚿ߩߘޕ‬ᨐ‫ߦߢ߹ࠇߎޔ‬ਥⷐࡑࡦ࠻࡞‛⾰ SiO2, (Mg,Fe)SiO3, (Mg,Fe)O ߩ⋧ᐔⴧ
߿ᾲᒢᕈ․ᕈ‫ޔ‬㜞࿶฽᳓㋶‛ AlOOH, phase D ߦ߅ߌࠆ㜞࿶᳓⚛⚿ว⁁ᘒߥߤߦ㑐ߒߡᚑᨐ߇ᓧࠄࠇߡ޿ࠆ‫ޔߢ⴫⊒ᧄޕ‬
ߎࠇࠄߩਛ߆ࠄ․ቯ㗔ၞ⎇ⓥ‫ޟ‬㜞࿶ਛᕈሶ⑼ቇ‫ߦޠ‬㑐ଥߔࠆ߽ߩࠍ⚫੺ߔࠆ‫ޕ‬
କளΧͼΡτȜΠ͈௸̞໦ঊ‫ڐ‬८! Ƚࡥఘ͈ಎ͈‫ס‬ఘȝ!
ฬฎደᄢቇ㜞╬⎇ⓥ㒮 ᅏ࿾ ᜏ↢
᳓⚛ࡂࠗ࠼࡟࡯࠻ߪ H2O ߣ H2 ߩಽሶ㑆ൻว‛ߢ޽ࠅ‫⚵ߩߎޔ‬วߖߦ࿶ജࠍട߃ࠆߎߣߦࠃࠅวᚑߐࠇࠆ‫ߪࠇߘޕ‬ᄢ
㊂ߩ᳓⚛ࠍๆ෼น⢻ߢ޽ࠅ‫ߚ߹ޔ‬ൻቇ⊛ߦࠢ࡝࡯ࡦߢ޽ࠆߚ߼‫ߩઁޔ‬୥⵬ߣ߽లಽߦ┹วߒ߁ࠆ᳓⚛ࠛࡀ࡞ࠡ࡯ߩ⾂⬿‛
⾰ߣߒߡ‫ޔ‬዁᧪߇ᦼᓙߐࠇߡ޿ࠆ‫ߦࠄߐޕ‬࿾⃿ᖺᤊ⑼ቇߩ㗴᧚ߣߒߡߪ‫ޔ‬ᄥ㓁♽ᄖㇱߩᖺᤊ࡮ⴡᤊࠍߟߊࠆ̌㋶‛̍ߣߒ
ߡ㊀ⷐߥ‛⾰ߢ޽ࠆ‫ߒ߆ߒޕ‬᳓⚛ࡂࠗ࠼࡟࡯࠻ߪᏱ࿶ߦ⟎ߊߣㅦ߿߆ߦಽ⸃ߒߡߒ߹߁ߚ߼‫޿ߒ⹦ߩߘޔ‬ᕈ⾰ߩℂ⸃ߪ޽
߹ࠅㅴࠎߢ޿ߥ޿‫ޕ‬᳓⚛ߪ H2O ಽሶ߇ߟߊࠆᩰሶߩ㓗㑆ߦࠥࠬ࠻ߣߒߡขࠅㄟ߹ࠇࠆ߇‫ߩ࠻ࠬࠥߩߎޔ‬ャㅍߦ㑐ߔࠆ⎇
ⓥߪ․ߦㆃࠇߡ߅ࠅ‫߇ࠇߘޔ‬㜞࿶ߘߩ႐ߢ᷹ቯߐࠇߚ଀ߪߎࠇ߹ߢߦሽ࿷ߒߥ߆ߞߚ‫ޕ‬
ᚒ‫ߪޘ‬㜞࿶ኈེౝߢࠟࠬࡂࠗ࠼࡟࡯࠻ࠍวᚑߒߥ߇ࠄ‫ߩߘޔ‬႐ߢหᤨߦ㜞ಽ⸃⢻ NMR ࠍⴕ߁ߎߣ߇น⢻ߥ‫ޔ‬ᣂߒ޿
ታ㛎ᛛⴚࠍߟߊߞߡ߈ߚ[1-4]‫੹ޕ‬࿁‫ޔ‬᭴ㅧ߇⇣ߥࠆਃ⒳ߩ᳓⚛ࡂࠗ࠼࡟࡯࠻‫ ࠅ߹ߟޔ‬Type II ࠢ࡜ࠬ࡟࡯࠻‫ޔ‬filled-ice II‫ޔ‬
filled-ice Ic ߩฦ⋧ߦߟ޿ߡ‫ߩߎޔ‬ᛛⴚࠍᔕ↪ߒߡᣂߚߥ⚿ᨐࠍᓧࠆߎߣ߇ߢ߈ߚ‫⿥ࠅ߹ߟޕ‬㜞࿶ NMR ߩᚻᴺߦࠃߞߡ‫ޔ‬
(1)㕖⎕უߢ(2)⹜ᢱࠍⷰኤߒߥ߇ࠄ(3)࿶ജࠍᄌൻߐߖߟߟ(4)ቯ㊂‫ޔ‬᭴ㅧ⸃ᨆ‫ޔ‬ಽሶㆇേ⸃ᨆࠍหᤨߦⴕ߁ߎߣߦᚑഞߒߚ‫ޕ‬
NMR ࠬࡍࠢ࠻࡞ߪ‫ޔ‬ൻቇࠪࡈ࠻߹ߚߪ✭๺ᤨ㑆ߦࠃߞߡ඙೎ߢ߈ࠆ 3 ߟߩᚑಽ㧔H2O ਛߩࡊࡠ࠻ࡦ‫ޔ‬H2 ᳇૕‫ޔ‬H2 ࠥࠬ
࠻㧕߆ࠄ᭴ᚑߐࠇࠆ‫ޕ‬H2 ᳇૕ߣ H2 ࠥࠬ࠻ߪ߶߷หߓൻቇࠪࡈ࠻ࠍᜬߟ߇‫ޔ‬੕޿ߦ⇣ߥࠆ✭๺ᤨ㑆ߦࠃߞߡ඙೎ߔࠆߎߣ
߇ߢ߈ߚ‫ޕ‬ᚒ‫ ߪޘ‬1 ᳇࿶߆ࠄ 4GPa ߹ߢߩⶄᢙ࿶ജߦ߅޿ߡ‫ޔ‬H2 ࠥࠬ࠻ᚑಽߩ✭๺ᤨ㑆߹ߚߪ⏛႐൨㈩ࠍ↪޿ߡ‫ߩߘޔ‬
᜛ᢔቯᢙࠍ᷹ቯߒߚ‫⚿ߩࠇߕ޿ޕ‬ᨐ߽‫ޔ‬ᩰሶਛߢߩ᳓⚛ߩಽሶャㅍߪ 10-8cm2/s ⒟ᐲߢ‫☼ޔ‬ᐲߩ㜞޿ᶧ૕ߥߺߩ୯ߢ޽ࠅ‫ޔ‬
࿕૕ਛߦ߅ߌࠆ᜛ᢔߣߒߡߪ⇣Ᏹߦㅦ޿୯ߢ޽ࠆߎߣ߇␜ߐࠇߚ‫ߥ߁ࠃߩߎޕ‬᳓⚛ಽሶߩㅦ޿᜛ᢔߪ‫ߩߘޔ‬วᚑ࡮⾂⬿࡮
ಽ⸃ᛛⴚࠍߟߊࠆ਄ߢ㊀ⷐߢ޽ࠆߣߣ߽ߦ‫ޔ‬᳖ᖺᤊ࡮ⴡᤊߩㅴൻࠍ⠨߃ࠆ਄ߢ߽ᣂߒ޿␜ໂࠍਈ߃ࠆ‫ޕ‬
ᧄ⎇ⓥߪ‫ޔ‬R.J. Hemley, H.K. Mao, J. Shu (Geophysical Laboratory, Carnegie Institution of Washington)‫ޔ‬ἏᎹੳ㨯
౎ᧁஜᒾ㧔᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ㧕߅ࠃ߮ J.A. Ripmeester, I.L. Moudrakovski (Steacie Institution of Molecular
Sciences, National Research Council of Canada)ߣߩ౒ห⎇ⓥߢ޽ࠆ‫ޕ‬
[1] ᅏ࿾ᜏ↢, 㜞࿶ജߩ⑼ቇߣᛛⴚ: 15, 324 (2005)
[2] Okuchi, T., et al., J. Chem. Phys. 122, 244509 (2005)
[3] Okuchi, T., et al., Rev. Sci. Instrum., 76, 026111 (2005)
[4] Okuchi, T. Phys. Earth Planet. Inter., 143, 611 (2004)
ιΕεȜρΑΏς΃ඤͅ‫ݟ‬಍̱̹କ͈ࢹ௮͂Θͼ΢η·Α!
㜞ࠛࡀᯏ᭴
ᄢ෹ ቄ຦
ේሶജᯏ᭴
㜞↰ ᘕ৻
⼾↰ਛ⎇ ἑᚭጊ ᓼᒾ‫⑔ޔ‬ፉ ༑┨
ේሶജᯏ᭴
Ⓑ᧛ ᵏᒄ
᧲ᄢ‛ᕈ⎇
ጊቶ
ୃ
ጀ⁁ࠪ࡝ࠤ࡯࠻ߢ޽ࠆࠞࡀࡑࠗ࠻߆ࠄวᚑߐࠇߚ FSM16 (Folded Sheets Mesoporous materials)ߪ‫ޔ‬࿑ 1 ߩ౮⌀ߩ᭽
ߦ⋥ᓘ⚂ 3nm ߩ⚦ሹ߇ⷙೣ⊛ߦ㈩೉ߒ‫ߩⱎޔ‬Ꮍ⁁ߩ᭴ㅧࠍᒻᚑߒߡ޿ࠆ‫․ޕ‬ᓽߣߒߡ‫ޔ‬Ḩᐲᄌൻߦࠃࠅߘߩ⚦ሹౝߦ᳓
21
ಽሶ߇ๆ⌕࡮⣕⌕ߔࠆߎߣ߆ࠄ‫⺞ޔ‬Ḩ᧚‫ޔ‬᳓ಣℂๆ⌕᧚‫ޔ‬ṁ೷࿁෼᧚ߩ↪ㅜ
ߦᦼᓙߐࠇߡ޿ࠆ᧚ᢱߢ޽ࠆ‫ޕ‬Ყ⴫㕙Ⓧߪ 1000m2/g ࠍ⿧߃‫⚦ޔ‬ሹኈⓍߪ
1cc/g ߦ߽㆐ߔࠆ‫⚦ߩߘޕ‬ሹ㛽ᩰߪࠪ࡝ࠞࠟ࡜ࠬߣห᭽ߦ[SiO4]࡙࠾࠶࠻߇
ࡀ࠶࠻ࡢ࡯ࠢ⁁ߦ⚿วߒߡ߅ࠅ‫⚦ޔ‬ሹౝ⴫㕙ߦߪࠪ࡜ࡁ࡯࡞ၮ㧔-Si-OH㧕
߇ሽ࿷ߔࠆ‫ޕ‬᳓⫳᳇࿶ࠍ೙ᓮߒߡ FSM ߦ᳓ࠍๆ⌕ߐߖࠆߣ‫ޔ‬࿑ 1 ߩታ✢ߩ
᭽ߥๆ⌕ᦛ✢߇ᓧࠄࠇࠆ‫ޕ‬P/P0=0.4㧔ࡕࡁ࡟ࠗࡗ࡯ጀ㧕ઃㄭ߹ߢߪ‫࡜ࠪޔ‬
ࡁ࡯࡞ၮߣߩ᳓⚛⚿วߦࠃࠅๆ⌕ߒ‫ޔ‬P/P0=0.5 ઃㄭߦߥࠆߣᲫ▤ಝ㓸ߦࠃ
ࠅᕆỗߦ᳓ಽሶ߇ๆ⌕ߒ‫࡞ࡈޔ‬లႯߐࠇࠆߣ⠨߃ࠄࠇߡ޿ࠆ‫ߩߎޔߒ߆ߒޕ‬
᭽ߥ⚦ሹౝ߳ߩ᳓ಽሶๆ⌕ᯏ᭴෸߮⚦ሹౝๆ⌕᳓ߩ᭴ㅧ߿࠳ࠗ࠽ࡒࠢࠬߩ⹦
⚦ߪᧂߛ⸃᣿ߐࠇߡ޿ߥ޿ߩ߇⃻⁁ߢ޽ࠆ‫⎇ᧄޕ‬ⓥߢߪ‫ߕ߹ޔ‬࿑ 1 ╬᷷ๆ
⌕ᦛ✢ߩ 2ޯ7 ߦᴪߞߡ FSM ߦ᳓ಽሶࠍๆ⌕ߐߖ‫ޔ‬ਛᕈሶḰᒢᕈᢔੂⵝ⟎
㧔AGNES㧕ࠍ↪޿ߡ⚦ሹౝ᳓ಽሶߩ᜛ᢔଥᢙࠍ᷹ቯߒߚ‫ޕ‬࿑ 2 ߦๆ⌕᳓㊂
ࠍ⠨ᘦߒ‫࡯ࡗࠗ࡟ࡁࡕޔ‬ጀߣߘࠇએ㒠ߩ᳓ಽሶߩㆇേࠍ Jump Diffusion
model ࠍㆡ↪ߒ⸃ᨆߒߚ⚿ᨐࠍ␜ߒߡ޿ࠆ‫ޕ‬3 ߩࡕࡁ࡟ࠗࡗ࡯⁁ᘒ߹ߢߩ᳓
ߩ᜛ᢔଥᢙߪ⚦ሹ⴫㕙߆ࠄ᧤❈㧔ࠪ࡜ࡁ࡯࡞ၮߣߩ᳓⚛⚿ว㧕ࠍฃߌ‫࡞ࡃޔ‬
࿑㧝 FSM16 ߩ TEM ౮⌀‫╬ޔ‬᷷ๆ⌕ᦛ
ࠢ᳓ߦኻߒߡ⚂ 3ޯ4.5 ୚ㆃߊߥߞߡ޿ࠆ‫ࠇߘޕ‬એ㒠ߩ᳓ߩ᜛ᢔଥᢙߪᕆỗ
✢෸߮ๆ⌕ㆊ⒟ߩᮨᑼ࿑
ࡕࡁ࡟ࠗࡗ࡯‫ޔ‬
ߦჇᄢߒ‫⥝ޔ‬๧ᷓ޿ߎߣߦࡈ࡞లႯ㗔ၞ㧔6,7㧕ߢߪࡃ࡞ࠢߩ᳓ߩ᜛ᢔଥᢙ
ࡈ࡞లႯ⁁ᘒ‫❑ޕ‬ゲ:⹜ᢱ 1g ᒰߚࠅߩๆ
ߦㄭ޿୯ߦߥࠆߎߣ߇ࠊ߆ߞߚ‫࡯ࡗࠗ࡟ࡁࡕޕ‬ጀߩ᳓ߩ FSM ⚦ሹ⴫㕙ߦ߅
‫ޕ‬
⌕㊂‫ޕ‬ᮮゲ;Ყ⫳᳇࿶㧔㘻๺⫳᳇࿶ P0㧕
ߌࠆ᭴ㅧߦട߃‫ޔ‬FSM 㛽ᩰߘߩ߽ߩߩ᭴ㅧ⸃ᨆ߽㐿ᆎߒߚ‫ޕ‬㛽ᩰ᭴ㅧߦߟ
޿ߡߪ‫ޔߩߩ߽޿ߥ޿ߡࠇߐ⋡⌕ࠅ߹޽ߢ߹ࠇߎޔ‬㕒⊛᭴ㅧ࿃ሶ S(Q)ߩ
First Sharp Diffraction Peak ߇‫ޔ‬ㅢᏱߩࠪ࡝ࠞࠟ࡜ࠬߣᲧセߒߡ㜞޿ Q 㗔
ၞߦࠪࡈ࠻ߒߡ޿ࠆߎߣࠍਛᕈሶోᢔੂⵝ⟎㧔KENS-HIT㧕߅ࠃ߮ਛᕈሶ
☳ᧃ࿁᛬ⵝ⟎㧔JRR3M-HERMES㧕ߩታ㛎ߢ⷗಴ߒߚ‫ࠍࠬ࡜ࠟࠞ࡝ࠪޕ‬㜞
ኒᐲൻߒߚ႐วߣห᭽ߩ௑ะߢ޽ࠆ‫ޕ‬ਛᕈሶዊⷺ࡮ᐢⷺᢔੂⵝ⟎㧔KENSSWAN㧕ߦࠃࠅ⚦ሹ߇ Hexagonal ㈩೉ߒߡ޿ࠆߎߣߦࠃࠆࡉ࡜࠶ࠣ෻኿߇
᷹ⷰߐࠇࠆ߇‫⚦ࠅࠃߦࠣࡦ࠴࠶ࡑ࠻ࠬ࡜࠻ࡦࠦޔ‬ሹౝߦ H2O-D2O ṁᶧࠍๆ
⌕ߐߖࠆߎߣߢࡉ࡜࠶ࠣ෻኿߇ᶖṌߔࠆߎߣࠍ⏕⹺ߒߚ‫ޕ‬H2O-D2O ṁᶧߩ
ኒᐲ߇‫ޔ‬1 g/cc ⒟ᐲߢ޽ࠆߥࠄ߫‫ޔ‬㛽ᩰ᭴ㅧߩኒᐲߪ 2.4 g/cc ⒟ᐲߣ⷗Ⓧ߽
ࠄࠇ‫ޔ‬S(Q)ߩࠪࡈ࠻㊂߆ࠄ⷗Ⓧ߽ࠄࠇࠆኒᐲߣ߶߷৻⥌ߔࠆ‫ޕ‬ቯ㊂⊛ߥ♖
࿑㧞 ฦὐ㧔࿑ 1,2`7㧕ߩ᜛ᢔଥᢙߩ୯‫ޕ‬
㕍ታ✢ߪࡃ࡞ࠢ᳓ߩ᜛ᢔଥᢙߩ୯‫ޕ‬
ᐲߦߟ޿ߡߪᬌ⸛ࠍ㊀ߨࠆᔅⷐ߇޽ࠅ‫ߦߜߛߚޔ‬㜞ኒᐲൻߒߡ޿ࠆߣߪ⸒߃
ߥ޿߇‫ࠞ࡝ࠪޔ‬㛽ᩰ⥄૕߽޽ࠆᗧ๧ߢ᜔᧤ਅߦ޽ࠆߚ߼ߦㅢᏱߩࠪ࡝ࠞࠟ࡜ࠬߣߪ⇣ߥࠆ᭴ㅧߢ޽ࠆߎߣߪචಽߦ⠨߃ࠄ
ࠇࠆ‫ޕ‬
J-PARC ߢߪ‫ޔ‬㜞ᒝᐲ᳢↪ోᢔੂⵝ⟎ߦࠃࠅ‫ޔ‬ዊⷺ㗔ၞ߆ࠄ㜞ⷺ㗔ၞ߹ߢ৻᜼ߦ᷹ⷰน⢻ߢ޽ࠅ‫ޔ‬㛽ᩰ᭴ㅧ‫ޔ‬᳓ಽሶ᭴
ㅧ‫⚦ޔ‬ሹ㑆⋧㑐߹ߢ৻᜼ߦ᷹ⷰน⢻ߢ޽ࠆ‫ᧄߦߊߣޕ‬ታ㛎ߩࠃ߁ߥ in-situ ታ㛎ߢߪ‫ޔ‬ᐢ޿ⓨ㑆⋧㑐ߩหᤨ᷹ⷰߪ᦭ലߢ
޽ࠆߣ⠨߃ߡ޿ࠆ‫⻠ޕ‬Ṷߢߪ‫ޔ‬㜞ᒝᐲ᳢↪ోᢔੂⵝ⟎ߦߟ޿ߡ߽⚫੺ߔࠆ‫ޕ‬
ະܰ௱ࠏକளࠏ໤ৗ͈ಎ଻ঊࢹ௮ٜଢ଼!
ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ ㊂ሶࡆ࡯ࡓᔕ↪⎇ⓥ㐷
㋈⼱ ⾫ᄥ㇢
ਛᕈሶᢔੂߩᦨ߽ఝ૏ߥὐߩ㧝ߟߦ‫ޔ‬シర⚛ߩ㧔Ყ㧕ᐓᷤᕈᢔੂᢿ㕙Ⓧ߇ᄢ߈޿ߎߣ‫ࠇߘޔ‬᡿ߦߘߩ૏⟎ࠍᱜ⏕ߦᝒ
߃ࠆߎߣ߇ߢ߈ࠆὐ߇᜼ߍࠄࠇࠆ‫੹ߦ․ޕ‬ᣣߩࠛࡀ࡞ࠡ࡯᧚ᢱ޽ࠆ޿ߪ↢૕‛⾰ߦ߅ߌࠆᦨ߽㊀ⷐߥర⚛ߩシ᳓⚛
Hේ
ሶࠍⷰኤߢ߈ࠆ੐ߪ‫ޔ‬X ✢࿁᛬ߢߪ㧔ήℂߢߪߥ޿߇㧕ේℂ⊛ߦ࿎㔍ߥ੐ߢ޽ࠅ‫ޔ‬ਛᕈሶᢔੂߩᦨᄢߩ․㐳ߩ߭ߣߟߣ
ߥߞߡ޿ࠆ‫⃻ޔࠄ߇ߥߒ߆ߒޕ‬ታߦߪ㧴ේሶߣਛᕈሶߩᢔੂㆊ⒟ߦ઻ߞߡ↢ߓࠆ㕖ᒢᕈᢔੂലᨐߣᄢ߈ߥ㕖ᐓᷤᕈᢔੂ
㧔ࡃ࠶ࠢ࡮ࠣ࡜࠙ࡦ࠼㧕߇‫ޔ‬᭴ㅧ⸃ᨆ਄ᄙᄢߥ࿎㔍ࠍᒁ߈⿠ߎߔߚ߼‫ߢ߹ࠇߎޔ‬㧴ේሶࠍᄙ㊂ߦ฽߻⚿᥏‫ޔ‬ṁᶧ߅ࠃ߮㕖
᥏⾰♽‛⾰ߩਛᕈሶᢔੂߦࠃࠆ᭴ㅧ⸃ᨆߪਛᕈሶᢔੂߩ⎇ⓥ⺖㗴߆ࠄᵈᗧᷓߊㆱߌࠄࠇߡ߈ߚ‫ߚ߁ⴕࠍࠇߘޔߡߒ߁ߘޕ‬
߼ߪ‫ޔ‬ᄙᄢߥഭജߣ੍▚߇‫ޔ‬㊀᳓⚛
D⟎឵ߐࠇߚ⹜ᢱࠍ↪ᗧߔࠆߎߣߦ⾌߿ߐࠇߡ߈ߚ‫੹ߒ߆ߒޕ‬ᣣ‫ޔ‬H ේሶࠍᄙ㊂ߦ
฽߻⚿᥏‫ޔ‬ṁᶧ߅ࠃ߮㕖᥏⾰‛⾰ߩ᭴ㅧ⸃ᨆߦߪ‫⑼ޔ‬ቇ⊛ߦ߽␠ળ⊛ߦ߽ⷐ⺧ߩ㕖Ᏹߦ㜞޿㊀ⷐߥ⎇ⓥ࠹࡯ࡑ߇ᄙᢙሽ࿷
ߔࠆ‫ޔߦ․ޕ‬X ✢࿁᛬ߛߌߢߪචಽߥ⸃ᨆ߇࿎㔍ߢ޽ࠆ↢๮⃻⽎ߩ⸃᣿ߦਇนᰳߥߚࠎ߬ߊ⾰߿ᩭ㉄ࠍ฽߻ṁᶧ‫ޔ‬ᣂߒ޿
ᯏ⢻ࠍ᦭ߔࠆ㕖᥏⾰㜞ಽሶ߿ᶧ᥏᧚ᢱ‫ߡߒߘޔ‬᳓⚛ࠛࡀ࡞ࠡ࡯೑↪ߦ㑐ࠊࠆΆᢱ㔚ᳰ‫ޔ‬᳓⚛ๆ⬿‛⾰ߥߤߩ᳓⚛♽‛⾰ߩ
ේሶ࡟ࡌ࡞ߩ᭴ㅧ⸃ᨆߦ㑐ࠊࠆ⎇ⓥ⠪ߩਛᕈሶ࿁᛬߳ߩᦼᓙߪಾታߢ޽ࠆ‫ޔߪߢ⴫⊒ᧄޕ‬਄⸥ߩ᳓⚛ߦ㑐ߔࠆ࿎㔍ࠍస᦯
ߔࠆߚ߼ߩ J-PARC ਛᕈሶ࿁᛬ⵝ⟎⸳⸘ߦ߅ߌࠆ⹜ߺ㧔᳓⚛♽ోᢔੂⵝ⟎ߩឭ᩺㧕‫ޔ‬ᣂߒ޿࠺࡯࠲⸃ᨆᴺߩឭ᩺
null-H(D)2O ᴺ‫߿ޔ‬ᶏᄖߩ᳓⚛♽‛⾰ߩ⎇ⓥ⁁ᴫ߿᳓⚛♽ߦ․ൻߒߚోᢔੂⵝ⟎ߩ⁁ᴫߥߤߦߟ޿ߡႎ๔ߔࠆ‫ޕ‬
22
ಎ଻ঊ๱౮଻८၄͙̹́‫ס‬ఘ Se-Te ࠏ͈ࢹ௮!
ᘮᄢℂᎿ
੩ᄢ㒮ℂ
ජ⪲ ᢥ㊁
ᄢ᡽ ⟵ౖ‫౎ޔ‬የ
⺈
࠮࡟ࡦߣ࠹࡞࡞ߪ‫⚿ޔ‬᥏⋧ߦ߅޿ߡߪ౒ߦ 2 ㈩૏㎮⁁ߩ᭴ㅧࠍߣࠆඨዉ૕ߢ޽ࠆ‫৻ޕ‬ᣇⲢὐ⋥਄ߢߩᶧ૕࠮࡟ࡦߪ 105
⒟ᐲߩේሶ߆ࠄ᭴ᚑߐࠇࠆ㜞ಽሶߢ޽ࠅౖဳ⊛ߥᶧ૕ඨዉ૕ߢ޽ࠆߩߦኻߒ‫ޔ‬ᶧ૕࠹࡞࡞ߪᢙේሶ⒟ᐲߩ⍴޿㎮ಽሶߢ᭴
ᚑߐࠇࠆᶧ૕㊄ዻߢ޽ࠆ‫ޕ‬ਔ⠪ߢ᭴ᚑߐࠇࠆᶧ૕ᷙว♽ߪ‫ޔ‬᷷ᐲ਄᣹ߦ઻޿ඨዉ૕߆ࠄ㊄ዻ߳ォ⒖ߒ‫ߩߘޔ‬ォ⒖᷷ᐲߪ࠮
࡟ࡦỚᐲ߇㜞޿߶ߤ਄᣹ߔࠆ‫⎇ᧄޕ‬ⓥߢߪ‫ޔ‬ᶧ૕ࠞ࡞ࠦࠥࡦ♽ߩඨዉ૕́㊄ዻォ⒖ߦ⿠࿃ߔࠆ࠳ࠗ࠽ࡒࠢࠬߩᄌൻࠍ‫ޔ‬ਛ
ᕈሶᢔੂ᷹ቯߦࠃߞߡ‫ޔ‬㨪Έߩⓨ㑆ࠬࠤ࡯࡞‫ޔ‬㨪ps ߩᤨ㑆ࠬࠤ࡯࡞ߢ᣿ࠄ߆ߦߔࠆߎߣࠍ⋡ᜰߒߚ‫ޕ‬
ታ㛎ߪ‫⧷ޔ‬࿖‫⎇ࡦ࠻࡞ࡊ࠶ࠕ࡮࠼࡯ࠜࡈࠩ࡜ޔ‬ⓥᚲߩⵝ⟎ MARI ࠍ↪޿ߡਛᕈሶᢔੂ᷹ቯࠍⴕߞߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ᝄേ
ㆇേ‫ޔ‬᜛ᢔㆇേ‫ޔ‬න৻☸ሶ⊛ㆇേ‫ޔߡ޿ߟߦࠇߙࠇߘޔ‬ඨዉ૕́㊄ዻォ⒖ߦ⿠࿃ߔࠆᄌൻࠍ᷹ⷰߒߚ‫ޕ‬
߹ߚ‫ޔ‬ඨዉ૕́㊄ዻォ⒖ߦ㑐ଥߔࠆ⚿ᨐߦട߃‫́࡯ࠡ࡞ࡀࠛޔ‬ᵄᢙⓨ㑆ߦ߅ߌࠆᶧ૕ߩశቇ⊛ᝄേࡕ࡯࠼ߩᝄ⥰޿ߦߟ
޿ߡ‫◲ޔ‬නߥࡕ࠺࡞ߦࠃࠆ⸃㉼ࠍⴕߞߚ‫ⶄޔߦ⥸৻ޕ‬㔀ᶧ૕߿ࠕࡕ࡞ࡈࠔࠬߩశቇ⊛ᝄേࡕ࡯࠼ߩࠛࡀ࡞ࠡ࡯́ᵄᢙⓨ㑆
ߦ߅ߌࠆᝄ⥰޿ߦߟ޿ߡ‫ޔ‬ቯᕈ⊛ߥ⸃㉼ߪߎࠇ߹ߢߦⴕࠊࠇߡ޿ࠆ߇‫ޔ‬ቯ㊂⊛⸃㉼ߪ࿎㔍ߢ޽ࠆߎߣ߇ᄙ޿‫ޔߒ߆ߒޕ‬
ᚒ‫ߪ♽ߩޘ‬ඨዉ૕⋧ߢߪቅ┙㎮⊛ߢ޽ࠆߎߣ߇⍮ࠄࠇߡ߅ࠅ‫ߦ․ޔ‬ᶧ૕ Se ߦߟ޿ߡߪߘߩ㕒⊛࡮േ⊛᭴ㅧ߇ታ㛎࡮ℂ⺰
ਔ㕙߆ࠄᄙߊ⎇ⓥߐࠇߡ޿ߡ‫ޔ‬ቯ㊂⊛⸃㉼ࠍⴕ߁ߎߣ߇ߢ߈ࠆน⢻ᕈ߇޽ࠆ‫ޕ‬ታ㓙‫ⷰޔ‬᷹ߐࠇߚ⚿วિ❗ࡕ࡯࠼ߩᒝᐲߩ
ᵄᢙଐሽᕈߩ․ᓽࠍ‫ޔ‬න⚐ߥࡕ࠺࡞ࠍ઒ቯߔࠆߎߣߢౣ⃻ߢ߈ࠆߎߣ߇ಽ߆ߞߚ‫ޕ‬ห᭽ߩ⸃ᨆࠍᶧ૕ Te50Se50 ߩඨዉ૕
⋧ߦ߽ㆡ↪ߢ߈ࠆߎߣࠍ␜ߒߚ‫ޕ‬
Palm Cubic Anvil գႁอ୆௡౾ͬဥ̞̹ಎ଻ٝ୬৘ࡑ͈দ͙!
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ
ዊᨋ ᐢ⾆‫ޔ‬ዊᨑ ⌀ੳ‫ޔ‬਄ᐥ ⟤਽
℄⃿ᄢቇℂቇㇱ
ㄝ࿯ ᱜੱ
↥ᬺᛛⴚ⎇ⓥᚲ
ᳰ↰ િ৻
૑෹㊀ᯏ᪾
↰ᷰ ᱜผ‫ޔ‬㜞ᧁ స໪
ૐ᷷‛ᕈ᷹ቯ↪ߦᲫ೑ᢎ᝼(⃻:᡼ㅍᄢቇ)ߦࠃࠅ㐿⊒ߐࠇߚ Cubic
Anvil ࿶ജ⊒↢ⵝ⟎[1]ߪ‫ޔ‬ૐ᷷ߦ߅޿ߡ߽ࠃࠅ⦟޿㕒᳓࿶ᕈࠍታ⃻ߔࠆ
ⵝ⟎ߣߒߡቯ⹏߇޽ࠆ[1]‫↢⊒ߩ⟎ⵝߩߎޕ‬࿶ജߪ὾⚿࠳ࠗࡗࠍ↪޿ࠆ
ߎߣߦࠃࠅ⚂ 11GPa ߹ߢน⢻ߢ޽ࠅ‫ޔ‬᷷ᐲߪ⚂ 1.8K ⒟ᐲ߹ߢ಄ළߢ
߈ࠆ‫ޔߚ߹ޕ‬㜞᷷㜞࿶‛ᕈ⎇ⓥߦ߅޿ߡ߽‫ޔ‬࿁᛬ታ㛎╬ߦ↪޿ࠄࠇᄙߊ
ߩᚑᨐࠍ߽ߚࠄߒߡ޿ࠆ‫ޕ‬
ᚒ‫ᦨޔߪޘ‬ㄭ‫ޔ‬㕒᳓࿶ᕈ߅ࠃ߮⊒↢࿶ജࠍ‶†ߦߖߕ‫ࠅࠃޔ‬ૐ᷷ߦ಄
ළน⢻ߥዊဳߩ࿶ജ⊒↢ⵝ⟎ߣߒߡ࿑ 1 ߦ␜ߐࠇߡ޿ࠆ᭽ߥ‫ޔ‬Palm
Cubic Anvil ࿶ജ⊒↢ⵝ⟎ࠍ㐿⊒ߒߚ‫ޕ‬౮⌀ߪ૞⵾ߒߚࠟࠗ࠼ࡉࡠ࠶ࠢ
ߣࠬ࡜ࠗ࠺ࠖࡦࠣࡉࡠ࠶ࠢࠍ⚵ߺวࠊߖ‫ޔ‬ᚻߩ߭ࠄߦਸ਼ߖߚ౮⌀ߢ޽ࠆ‫ޕ‬
Fig.1 The palm cubic anvil cell.
ᤨߩో૕ߩᄢ߈ߐߪ 108mmǾ
ᄖᒻx175mm
㜞ߐߣߥߞߚ‫ߕ߹ޕ‬ᆎ
߼ߦ‫ޔ‬Bi ߣ Te ߩ࿶ജ⺃⿠᭴ㅧ⋧ォ⒖ߦࠃࠅቶ᷷ߦ߅ߌࠆ⩄㊀ߦኻߔࠆ
⊒↢࿶ജࠍ࠴ࠚ࠶ࠢߒߚ‫ޕ‬࿑ 2 ߦ␜ߐࠇߡ޿ࠆࠃ߁ߦ‫ޔ‬ቶ᷷ߦ߅޿ߡ
⚂ 8GPa ⒟ᐲߩ࿶ജ⊒↢߇น⢻ߢ޽ࠅ‫ߩᤨߩߘޔ‬ട㊀ߪ⚂ 80ton ߢ
޽ߞߚ‫ޔߚ߹ޕ‬ૐ᷷ߦ߅ߌࠆ⊒↢࿶ജߪ Pb ߩ⿥વዉォ⒖᷷ᐲߦࠃࠅ
࠴ࠚ࠶ࠢߒߚ‫ߪߦ⊛⚳ᦨޕ‬㧟He ಄ಓᯏࠍ૶↪ߒ‫ޔ‬0.5K ⒟ᐲߢߩ᷹ቯࠍ
⋡ᮡߣߒߡ޿ࠆ‫ޕ‬
⻠Ṷߢߪ‫ࠍ⟎ⵝߩߎޔ‬ਛᕈሶ࿁᛬↪࿶ജ⊒↢ⵝ⟎ߣߒߡߩน⢻ᕈߦߟ
޿ߡ⠨ኤߔࠆ‫ޕ‬
[1]N.Mori et al.:High Pressure Research 24,225 (2004)
P re s s u re (G p a )
ࠟࠗ࠼ࡉࡠ࠶ࠢߩᄖᓘߪ 80 mmǾ‫ޔ‬ട࿶ᣇᑼߪࠢ࡜ࡦࡊᑼߣߒ‫ߩߘޔ‬
8
Te I-II
Bi I-II
6
Bi IV-V
4
2
0
0
Bi II-III
20 40
60
80
Load(Ton)
Fig.2 Load-Pressure curve at room temperature
23
କள̦ࡎͬ՜ͥ߄௺କள‫ا‬໤͈գႁညܳࢹ௮Ȇഩঊഢ֊!
!
ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴㊂ሶࡆ࡯ࡓᔕ↪⎇ⓥㇱ㐷᡼኿శ࡙࠾࠶࠻
㕍ᧁ ൎᢅ
Ꮧ࿯㘃㊄ዻ
La, Yߪ᳓⚛ൻ෻ᔕߦࠃߞߡ⛘✼૕ߦォ⒖ߔࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ‫ޕ‬᳓⚛ේሶߪ hcp ߽ߒߊߪ fcc ㊄ዻᩰ
ሶߩ྾㕙૕ࠨࠗ࠻ࠍ߹ߕභ᦭ߒ
MH2‫ޔ‬ᰴߦ౎㕙૕ࠨࠗ࠻ࠍභ᦭ߔࠆ
MH3‫ޕ‬㊄ዻ⛘✼૕
MIォ⒖ߪ 3 ᳓⚛ൻ‛ᒻᚑ
ㆊ⒟ߢ⿠ߎࠅ‫ࡊ࠶ࡖࠡ࠼ࡦࡃޔ‬㨪2eV ߩนⷞశ㗔ၞߢㅘ᣿ߥ⛘✼૕߇↢ᚑߔࠆ‫ޕ‬3 ᳓⚛ൻ‛ߩ㔚ሶࡃࡦ࠼᭴ㅧ⸘▚ߦࠃࠆ
MI ォ⒖ߩᯏ᭴⸃᣿⎇ⓥߪォ⒖߇⊒⷗ߐࠇߚ 1996 ᐕએ㒠‫♖ޔ‬ജ⊛ߦⴕߥࠊࠇߡ޿ࠆ߇㨪2eV ߩࠡࡖ࠶ࡊᒻᚑߩ↱᧪ߦߟ
޿ߡߪᧂߛߦ⼏⺰߇޽ࠆࠃ߁ߢ޽ࠆ‫ޕ‬
㜞࿶⎇ⓥߩ⋡⊛ߪੑߟߢ޽ࠆ‫✼⛘ޕ‬૕ߢ޽ࠆ 3 ᳓⚛ൻ‛ࠍട࿶ߒ‫ޔ‬㊄ዻᩰሶߩ෼❗޽ࠆ޿ߪ᭴ㅧォ⒖ߦ઻߁శቇ
ࠡࡖ࠶ࡊࠍ᷹ቯߒ‫ޔ‬᭴ㅧߣ㔚ሶ⁁ᘒߩ㑐ଥࠍ♽⛔⊛ߦ⺞ߴࠆߎߣ‫ࠅࠃޔ‬㜞޿࿶ജਅߢ 3 ᳓⚛ൻ‛ߩࡃࡦ࠼ࠡࡖ࠶ࡊࠍ㐽
ߓ‫ޔ‬㊄ዻ⁁ᘒࠍታ⃻ߔࠆߎߣߢ޽ࠆ‫ޕ‬s(H)d(Y) ᷙᚑߦࠃߞߡࠡࡖ࠶ࡊ߇㐿޿ߡ⛘✼૕ߦߥࠆ‫⚿ߩ▚⸘࠼ࡦࡃ߁޿ߣޔ‬ᨐ
߆ࠄ‫ޔ‬㜞࿶ਅߢࡃࡦ࠼ࠝ࡯ࡃ࡯࡜࠶ࡊߦࠃߞߡ಴⃻ߔࠆ㊄ዻߪ᳓⚛ߩ 1s ゠㆏߇ࡈࠚ࡞ࡒ㕙ᒻᚑߦ㑐ਈߒߚ‫ޟ‬1s ㊄ዻ‫ߣޠ‬
ߒߡ․ᓽઃߌࠄࠇࠆߢ޽ࠈ߁‫ޕ‬
࠳ࠗࡗࡕࡦ࠼ࠕࡦࡆ࡞࠮࡞
DACࠍ↪޿ߡ‫ޔ‬ᵹ૕᳓⚛ߣ㊄ዻߩ㜞࿶෻ᔕߦࠃࠆ᳓⚛ൻ‛ߩวᚑߣ᡼኿శ X ✢࿁᛬ߦࠃ
ࠆ㜞࿶⚿᥏᭴ㅧ᷹ቯ߅ࠃ߮శๆ෼᷹ቯߦࠃࠆ᳓⚛㊄ዻ⚿ว⁁ᘒߣ㔚ሶㆫ⒖⁁ᘒߩ᷹ⷰࠍ‫ޔ‬Sc‫ޔ‬Y‫ޔ‬La ࠍኻ⽎ߦቶ᷷ਅ‫ޔ‬
㨪50 GPa ߹ߢߩ࿶ജ㗔ၞߢⴕߥߞߚ‫ߩߘޕ‬ਛߢ‫ޔ‬YH3 ߪ 10GPa ઃㄭߢ hcp ߆ࠄ fcc ߦะߌߡߩ᭴ㅧ⋧ォ⒖ࠍ‫ߦࠄߐޔ‬
㜞࿶ fcc ⋧ߪ 23GPa ߢࡃࡦ࠼ࠡࡖ࠶ࡊࠢࡠࠫࡖ࡯ࠍ⿠ߔߎߣ߇᷹ⷰߐࠇߡ޿ࠆ‫ޕ‬ᗐቯᄖߩ⃻⽎ߣߒߡૐ࿶ hcp ⋧
㧨10GPaߣ㜞࿶ fcc ⋧
20GPa㧨ߩ㑆ߦ࿶ജ᏷ 10GPa ߦᷰߞߡㆫ⒖⋧߇᷹ⷰߐࠇߡ޿ࠆ‫ޕ‬ォ⒖ߦ઻߁㊄ዻ㕙ߩⓍጀ
ࠪ࡯ࠢࠛࡦࠬᄌൻ߇᳓⚛ߦࠃߞߡࡇࡦᱛ߼ߐࠇ‫⚿ߩߘޔ‬ᨐᲑ㓏⊛ߦォ⒖߇ㅴ߻ᣂߒ޿ᯏ᭴ߦࠃࠆォ⒖ߢ޽ࠆߣផ᷹ߒߡ޿
ࠆ‫ޔߚ߹ޕ‬ട࿶ߦࠃߞߡ 2 ᳓⚛ൻ‛߇ 1 ᳓⚛ൻ‛ߣ 3 ᳓⚛ൻ‛ߦนㅒ⊛ߦಽ⸃ߔࠆ෻ᔕ߽᷹ⷰߐࠇߡ߅ࠅ‫ޔ‬㊄ዻᩰሶౝ
ߢߩ᳓⚛⒖േ߇ኈᤃߦ⿠ߎࠆߎߣ߇␜ໂߐࠇߡ޿ࠆ‫ߩࠄࠇߎޕ‬㜞࿶ਅߢ಴⃻ߔࠆ㔚ሶォ⒖‫ޔ‬᭴ㅧ⋧ォ⒖‫ޔ‬ಽ⸃෻ᔕߪ޿ߕ
ࠇ߽᳓⚛߇ਥᓎࠍᜂߞߡ߅ࠅ‫ޔ‬ᯏ᭴⸃᣿ߦߪਛᕈሶ࿁᛬ߦࠃࠆ᳓⚛૏⟎ߩ᳿ቯ߇ਇนᰳߢ޽ࠆ‫ޕ‬㜞࿶ਛᕈሶ࿁᛬ታ㛎ߩⅣ
Ⴚᢛ஻߇ᒝߊᦸ߹ࠇࠆ‫ޕ‬
४ࣉ໲ࡃ!
A. Ohmura et. al., Infrared spectroscopic study of the band-gap closure in YH3 at high pressure, Phys. Rev. B, 73,
104105(2006).
A. Machida et. al., X-ray diffraction investigation of the hexagonal-fcc structural transition in yttrium trihydride
under hydrostatic pressure, Solid State Commun., 138, (2006)436.
24
໤଻ࡄ‫ݪ‬ਫ਼ౣ‫ݪࡄܢ‬ٛ!
! ! ΄ρΑഢ֊͈ൡ֚‫ٽ‬ැȇ੨ၑა͈௖ࡽ‫͂߸۾‬৘ࡑഎ࠿બ
!
ᣣᤨ㧦 ᐕ ᦬ ᣣ
᦬㨪 ᦬ ᣣ
᳓㧕
ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᧄ㙚⻠⟵ቶ
ឭ᩺ઍ⴫⠪ ዊ↰၂ ቁ㧔਻Ꮊᄢቇ㧕
౒หឭ᩺⠪ ጟ ᐙ㓶㧔ᄹ⦟వ┵⑼ቇᛛⴚᄢቇ㒮ᄢቇ㧕
㊄⼱ ೑ᴦ㧔੩ㇺᄢቇ㧕
Ꮉ᧛
శ㧔ᄢ㒋ᄢቇ㧕
╣੗ ℂ↢㧔ฬฎደᄢቇ㧕
ㄆ
ၨ㧔᧲੩ᄢቇ㧕
㋈ᧁ
ᔀ㧔᧲੩ᶏᵗᄢቇ㧕
㜟ጊ
৻㧔᧲੩ᄢቇ㧕
ᷓየ ᶈᰴ㧔੩ㇺᎿ⧓❫⛽ᄢቇ㧕
⮮Ꮉ ᷡਃ㧔ർᶏ㆏ᄢቇ㧕
᧻੗
ᷕ㧔਻Ꮊᄢቇ㧕
ጊቶ
ୃ㧔᧲੩ᄢቇ㧕
ࠟ࡜ࠬォ⒖ߪ‫⃻ޔ‬࿷ᧂ⸃᳿ߩ⑼ቇ਄ߩ㊀ⷐߥ⺖㗴ߩ৻ߟߢ޽ࠆ‫ޕ‬1980 ᐕઍᓟඨ߆ࠄ 1990 ᐕઍߦ߆ߌߡታ㛎ߩㅴᱠߣ
ࡕ࡯࠼⚿วℂ⺰
MCTߦࠃߞߡ‧ᒁߐࠇߚࠟ࡜ࠬォ⒖⎇ⓥߪ‫ޔ‬21 ਎♿ߦߥߞߡ╙ 2 ߩᲑ㓏ߦ౉ߞߚ‫ߩߎޕ‬㧡ᐕ㑆ߦ㐿௅
ߐࠇߚࠟ࡜ࠬォ⒖㑐ଥߩ࿖㓙ળ⼏ߪ‫ ߫߃଀ޔ‬2001 ᐕ
ࠢ࡟࠲ፉ‫ޔ‬2005 ᐕ
࡝࡯࡞ߩ International Discussion Meeting
on Relaxations in Complex Systems(IDMRCS) ‫ ޔ‬2002 ᐕ ‫ ޔ‬2006 ᐕ ࡇ ࠨ ߩ Workshop on Non Equilibrium
Phenomena in Supercooled Fluids, Glasses and Amorphous Materials㧔WNEP㧕‫ޔ‬2002 ᐕ
ࡠ࡯ࡑ‫ޔ‬2004 ᐕ
ࡃࡦࠟ
ࡠ࡯࡞ߩ Unifying Concepts in Glass Physics(UCGP) ߥߤࠍ᜼ߍࠆߎߣ߇ߢ߈ࠆ‫ߩࠄࠇߎޕ‬࿖㓙ળ⼏ߢߪ‫ޔ‬MCT ߆ࠄ
࡜ࡦ࠼ࠬࠤ࡯ࡊ߳ߣ޿߁ᵹࠇ߇↢߹ࠇߡ߈ߚ‫ޕ‬
ߎߩࠃ߁ߥ਎⇇ߩേะߩਛߢ‫ޔ‬ᚒ߇࿖ߦ߅޿ߡ߽⒳‫ޘ‬ቇળߩࠪࡦࡐࠫ࠙ࡓߩઁߦ‫ޔ‬᭽‫ߩޘ‬ಽ㊁ߩ⎇ⓥ⠪ࠍ᜗޿ߚ⍴ᦼ⎇
ⓥળࠍ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲߩᡰេࠍᓧߡㆊ෰ 2002 ᐕ
‫‛ࠬ࡜ࠟޟ‬ᕈ߅ࠃ߮ࠟ࡜ࠬォ⒖⎇ⓥߩᣂዷ㐿‫ ߮ࠃ߅ޠ‬2004 ᐕ
‫ޟ‬ᭂ┵㕖ᐔⴧ♽ߩ‛ᕈߣࠛࡀ࡞ࠡ࡯࡜ࡦ࠼ࠬࠤ࡯ࡊ‫ߦޠ‬㐿௅ߒߚ‫ޕ‬
੹ᐕᐲߪ‫ ߩࠄࠇߎޔ‬2 ࿁ߩ⍴ᦼ⎇ⓥળࠍฃߌߡ‫ ߩߎޔ‬2 ᐕ㑆ߦ߅ߌࠆฦಽ㊁ߦ߅ߌࠆᚑᨐߣ਎⇇⊛ߥേะࠍ౒᦭ߔࠆ
ߚ߼ߦ‫⻉ޔ‬ℂ⺰ߩ⋧੕㑐ଥߣታ㛎⊛ᬌ⸽ࠍਥ㗴ߣߒߡ‫ޔ‬ᰴߩ⿰ᣦߢ⍴ᦼ⎇ⓥળࠍ㐿௅ߔࠆߎߣߣߒߚ‫ޕ‬
ࡄ‫ݪ‬͈ٛਇকȇ!
ࠟ࡜ࠬォ⒖ߦ㑐ߔࠆ⎇ⓥߦ߅ߌࠆℂ⺰࡮ታ㛎ߩ෺ᣇߢᱷሽߔࠆ໧㗴ὐࠍ᣿⏕ߦߔࠆߎߣ‫ࠍࠄࠇߘޔ‬ෳട⠪ోຬߢ౒᦭ߔ
ࠆߎߣߦਥ⌒ࠍ߅ߊ‫ࡊ࡯ࠤࠬ࠼ࡦ࡜࡯ࠡ࡞ࡀࠛޕ‬ឬ௝ࠍߪߓ߼ߣߔࠆࠟ࡜ࠬォ⒖ߩ⻉ℂ⺰ߩ⋧੕㑐ଥࠍᢛℂߒ‫ᦨޔ‬ㄭߩታ
㛎⚿ᨐࠍ߽ߣߦ‫ౕޔ‬૕⊛ߥᬌ⸽น⢻ᕈࠍᬌ⸛ߔࠆ‫ޕ‬
ળ⼏ߦߪ‫ోޔ‬࿖߆ࠄ᭽‫ߥޘ‬ಽ㊁ߩ⎇ⓥ⠪߇ᑧߴ 158 ฬ
ೋᣣ 52 ฬ‫ޔ‬2 ᣣ⋡ 67 ฬ‫ޔ‬3 ᣣ⋡ 39 ฬෳടߒ‫ޔ‬ญ㗡⊒⴫ 31
ઙ‫ ⴫⊒࡯࠲ࠬࡐޔ‬15 ઙߩ⻠Ṷ߇ⴕࠊࠇߚ‫ޕ‬ℂ⺰⊛ᨒ⚵ߺߩ᭴▽‫ޔ‬ታ㛎ᚻᴺߩᡷༀ‫ޔ‬ታ㛎ኻ⽎ߩ᜛ᄢߥߤࠟ࡜ࠬォ⒖ߩᧄ
⾰⊛ߥℂ⸃ߦะߌߡ‫ޔ‬ᚒ߇࿖ߦ߅ߌࠆ⎇ⓥ߇⌕ታߦ⊒ዷߒߡ޿ࠆߎߣ߇␜ߐࠇߚ‫ޔߚ߹ޕ‬ฦ⻠Ṷߦኻߔࠆ⼏⺰߇ᄢᄌᵴ⊒
ߦⴕࠊࠇ‫ޔ‬ᣂߒ޿࠹࡯ࡑ߇⸳ቯߐࠇࠆߥߤ⎇ⓥળߣߒߡᄢ߈ߥᚑᨐ߇޽ߞߚ‫ޕ‬
25
ࡊ ࡠ ࠣ ࡜ ࡓ
22031)࠮*!
10:00㨪12:10 ᐳ㐳 ᧻੗
ᷕ㧔਻Ꮊᄢቇ㧕
⎇ⓥળߩ⿰ᣦߦߟ޿ߡ㧔10 ಽ㧕 ឭ᩺ઍ⴫⠪ ዊ↰၂ ቁ ਻Ꮊᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮
20a-1 ዊ↰၂ ቁ ਻Ꮊᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮
ࠟ࡜ࠬォ⒖ߩ⥄↱ࠛࡀ࡞ࠡ࡯࡜ࡦ࠼ࠬࠤ࡯ࡊឬ௝
20a-3 ㊁፸ 㦖੺ ർᶏ㆏ᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮
ࠟ࡜ࠬォ⒖ߦߣ߽ߥ߁⺃㔚✭๺ 㧙ਥ✭๺ㆊ⒟ߣ೽✭๺ㆊ⒟㧙
20-a4 ᧻↰ ⵨ ╳ᵄᄢቇᢙℂ‛⾰⑼ቇ⎇ⓥ⑼
᷷ᐲᄌ⺞ဳ DSC ࠍ↪޿ߚ࡝࠴࠙ࡓࡎ࠙㉄Ⴎࠟ࡜ࠬ♽ߩ᜛ᒛᜰᢙဳ✭๺ߩ⎇ⓥ
20-a5 ₎ጊ 㕏ᄦ ੩ㇺᎿ⧓❫⛽ᄢቇ㜞ಽሶᯏ⢻Ꮏቇኾ᡹
᷷ᐲᄌ⺞ᴺߦࠃࠆ㜞ಽሶࠟ࡜ࠬߩᾲኈ㊂ߣ⤘ᒛ₸ߩหᤨ᷹ቯ
ᤤ ભ ߺ
13:30㨪15:00 ᐳ㐳 ᷓየ ᶈᰴ㧔੩ㇺᎿ⧓❫⛽ᄢቇ㧕
20p-1 ㋈ᧁ ᔀ ᧲੩ᶏᵗᄢቇ㘩ຠ↢↥⑼ቇ⑼
㘩ຠߩࠟ࡜ࠬ⁁ᘒォ⒖ߣߘߩ೑↪
20p-2 ↰ਛ ᄢ੺ ⁛ㄘᬺ↢‛⾗Ḯ⎇ⓥᚲ
ࠟ࡜ࠬൻߦࠃࠆᬀ‛⨍㗂ߩ଻ሽ
20p-3 ⬉ญ޽ࠁߺ ർᶏ㆏ᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮
ࠟ࡜ࠬォ⒖ߩಽሶ࠳ࠗ࠽ࡒࠢࠬߦ⷗ࠆ↢๮⃻⽎ߩേ⊛⚛ㆊ⒟
15:20㨪16:50 ᐳ㐳 ㊁፸ 㦖੺㧔ർᶏ㆏ᄢቇ㧕
20p-4 ✎⽾ ┥ᄥ ᮮᵿ࿖┙ᄢቇᄢቇ㒮Ꮏቇ⎇ⓥ㒮
⏛ᕈࠗࠝࡦᶧ૕ bmim[FeCl4]ߩ᭴ㅧࠟ࡜ࠬਛߦ߅ߌࠆࠬࡇࡦࠣ࡜ࠬ
20p-5 ↰ਛ ⡸ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ
න৻ᚑಽ߆ࠄߥࠆಽሶᕈᶧ૕ߩᶧ૕࡮ᶧ૕ォ⒖ߣߘߩࠠࡀ࠹ࠖࠢࠬ
20p-6 ᧻ᧄ ᱜ๺ ฬฎደᄢቇ‛⾰⑼ቇ࿖㓙⎇ⓥ࠮ࡦ࠲࡯
ૐኒᐲ᳓ߣߪ૗߆ 㨪᳓ߩ․⇣ߥ‛ᕈߩ⿠Ḯࠍតࠆ㨪
17:10㨪19:10 ᐳ㐳 ጊቶ
ୃ㧔᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ㧕
20p-7 ේ↰ ᘏਭ ⁛┙ⴕ᡽ᴺੱℂൻቇ⎇ⓥᚲ
エ X ✢ಽశߢ⷗ࠆ᳓ߩ᳓⚛⚿ว
20p-8 ਛᎹ ᵗ ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴
㕖ᐓᷤᕈਛᕈሶ㕖ᒢᕈᢔੂߦࠃࠆ࠲ࡦࡄࠢ⾰࠳ࠗ࠽ࡒࠢࠬߩ᳓๺ലᨐ
20p-9 ╣੗ ℂ↢ ฬฎደᄢቇᎿቇ⎇ⓥ⑼
Ⱞ⊕⾰ߩേ⊛ォ⒖ߣశࠪࠣ࠽࡞ฃኈ
20p-10 㜞↰ ┨ ᣩ⎣ሶᩣᑼળ␠ਛᄩ⎇ⓥᚲ
ࠪ࡝ࠞࠟ࡜ࠬߩዪᚲ᭴ㅧᄌൻߦ㑐ߔࠆಽሶേജቇࠪࡒࡘ࡟࡯࡚ࠪࡦ
26
22032)‫!*غ‬
10:00㨪12:00 ᐳ㐳 ╣੗ ℂ↢㧔ฬฎደᄢቇ㧕
21a-1 ᧛ਛ ᱜ ᗲ⍮Ꮏᬺᄢቇၮ␆ᢎ⢒࠮ࡦ࠲࡯
ࡕ࠺࡞ಽሶߩᶧ૕ߢߩ㐳ᤨ㑆✭๺
21a-2 ㈕ ⺈⯥ ಽሶ⑼ቇ⎇ⓥᚲ
Molecular-dynamics simulation study on the nature of glassy reorientational dynamics
21a-3 ችፒ Ꮊᱜ 㜞⍮Ꮏ⑼ᄢቇ✚ว⎇ⓥᚲ࠽ࡁഃ⵾࠮ࡦ࠲࡯
ㆊ಄ළᶧ૕ߦ߅ߌࠆേ⊛⋧㑐ߩᓸⷞ⊛ℂ⺰
21a-4 ૒‫᧲ ৻⌀ ޘ‬ᄢ㒮✚วᢥൻ⎇ⓥ⑼
․⇣៨േᴺߦࠃࠆࠟ࡜ࠬォ⒖ߩℂ⺰
ᤤ ભ ߺ
13:00㨪15:00 ᐳ㐳 ዊ↰၂ ቁ㧔਻Ꮊᄢቇ㧕
21p-1 ⢫
ᥙ ‛⾰࡮᧚ᢱ⎇ⓥᯏ᭴
⿥વዉ⏛᧤♽ߩࠣ࡜ࠬ⁁ᘒ
21p-2 ศ㊁ ర ᄢ㒋ᄢቇᄢቇ㒮ℂቇ⎇ⓥ⑼
ࠟ࡜ࠬ♽ߩࡔ࠰ࠬࠦࡇ࠶ࠢߥࠬࠤ࡯࡞ߢߩ㕖✢ᒻᔕ╵
21p-3 Ꮉ᧛ శ 㒋ᄢℂ
ࠬࡇࡦࠣ࡜ࠬߣࠞࠗ࡜࡝࠹ࠖ
21p-4 ⢻Ꮉ ⍮ᤘ ർᶏ㆏ᄢቇᄢቇ㒮Ꮏቇ⎇ⓥ⑼
࡜ࡦ࠳ࡓ⏛႐ XY ࡕ࠺࡞ߦ߅ߌࠆࠣ࡜ࠬ⊛ߥ㕖ᐔⴧ✭๺ߩࠨࠗ࠭ࠬࠤ࡯࡝ࡦࠣ
ࡐࠬ࠲࡯⊒⴫ 15:00㨪16:30 ᐳ㐳 ⮮Ꮉ ᷡਃ㧔ർᶏ㆏ᄢቇ㧕
61:40㨪18:10 ᐳ㐳 Ꮉ᧛ శ㧔ᄢ㒋ᄢቇ㧕
21p-5 ዊ࿡ ᱜ᥍ ᧲੩Ꮏᬺᄢቇ
ࠪ࡝ࠞࠥ࡞⚦ሹਛߦ㐽ߓㄟ߼ߚ᳓ߩࠟ࡜ࠬォ⒖᜼േ
21p-6 ᷓየ ᶈᰴ ੩ㇺᎿ⧓❫⛽ᄢቇ
࡜ࡌ࡞ߒߚࡐ࡝ࠬ࠴࡟ࡦ⭯⤑ߩࠟ࡜ࠬォ⒖ߣ࠳ࠗ࠽ࡒࠢࠬ
21p-7 ᧻੗ ᷕ ਻ᄢ‛ℂ
ಽሶേജቇࠪࡒࡘ࡟࡯࡚ࠪࡦߦࠃࠆࠟ࡜ࠬォ⒖ㄭறߩදหౣ㈩⟎㗔ၞߩ⠨ኤ
ᙣ⺣ળ 18㧦30㨪20㧦30 ᣈࠞࡈࠚ࠹࡝ࠕ
࿖㓙ળ⼏㐿௅ߦะߌߚ⹤ߒว޿ߣᛂวߖ
22033)କ*!
9㧦30㨪11㧦30 ᐳ㐳 ㊄⼱ ೑ᴦ㧔੩ㇺᄢቇൻቇ⎇ⓥᚲ㧕
20a-2 㜞㊁ శೣ ᣧⒷ↰ᄢቇℂᎿቇㇱ‛ℂቇ⑼
ࠕࠢ࠻ࡒࠝࠪࡦಽሶࡕ࡯࠲࡯ߩࠛࡀ࡞ࠡ࡯࿾ᒻߣേ૞ᯏ᭴
22a-1 ฎᴛ ᶈ 㜞⍮Ꮏ⑼ᄢቇ
ᒝ⋧㑐ࠞ࠙ࡦ࠲࡯ࠗࠝࡦ♽ߩᐔဋ႐ᣇ⒟ᑼ㧦⋧㑐႐ࠕࡊࡠ࡯࠴
22a-2 ጊቶ ୃ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ
ࠗࠝࡦᶧ૕ߩࠟ࡜ࠬォ⒖ߣૐᝄേᢙ࠳ࠗ࠽ࡒࠢࠬ
27
22a-3 Ꮠፒ Ảሶ ᧲੩Ꮏᬺᄢቇ
ࠗࠝࡦવዉᕈࠟ࡜ࠬߦ߅ߌࠆࠗࠝࡦ࠳ࠗ࠽ࡒࠢࠬߩേ⊛ਇဋ৻ᕈ
11㧦50㨪12㧦50 ᐳ㐳 ᧻੗
ᷕ㧔਻Ꮊᄢቇ㧕
22a-4 ㊄⼱ ೑ᴦ ੩ㇺᄢቇൻቇ⎇ⓥᚲ
㜞ಽሶ⭯⤑ߩࠟ࡜ࠬォ⒖࡯േ⊛⇣ᣇᕈߣਇဋ৻ᕈ
22a-5 㜟ጊ ৻ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ
ࠬࡇࡦࠣ࡜ࠬ⏛႐ਛ⏛ൻߩ․⇣ߥࠬࡠ࡯࠳ࠗ࠽ࡒ࠶ࠢࠬ
=================================================
ࡐࠬ࠲࡯⊒⴫ߩ࡝ࠬ࠻ 15 ઙ
PS-1 ᧻ਅ ൎ⟵ NIMS
࡜ࡦ࠳ࡓߦ㈩⟎ߐࠇߚࡇࡦᱛ߼⏛႐ਛߩ⏛ოㆇേ
PS-2 ㊄
㍑ ಽሶ⑼ቇ⎇ⓥᚲ⸘▚ಽሶ⑼ቇ⎇ⓥ
ࠦࡠࠗ࠼ಽᢔ♽ߦ߅ߌࠆ
㔚᳇ᵹ૕ജቇ⃻⽎ߩࠪࡒࡘ࡟࡯࡚ࠪࡦ
PS-3 ⿒⍹ ᥙ 㚂ㇺᄢቇ᧲੩ℂᎿቇ⎇ⓥ⑼‛ℂቇ
bouncing ball orbits ߩ޽ࠆࡆ࡝ࡗ࡯࠼♽ߩౣᏫᤨ㑆ಽᏓ
PS-4 㡆ᶏ ቁਯ ᧲ർᄢቇᎿቇ⎇ⓥ⑼࠽ࡁࡔࠞ࠾ࠢࠬ
ಽሶേജቇࠪࡒࡘ࡟࡯࡚ࠪࡦߦࠃࠆㆊ಄ළᶧ૕․ᕈ
PS-5 ᶎᧄ ੧ ਻Ꮊᄢቇᄢቇ㒮ℂቇᐭಝ❗♽⑼ቇኾ᡹
⥄↱ࠛࡀ࡞ࠡ࡯࡜ࡦ࠼ࠬࠤ࡯ࡊឬ௝ߦ߅ߌࠆ‫ޔ‬ㅦ޿✭๺ߣㆃ޿✭๺
PS-6 ㊁᧛ ␭༑ ᣣᧄᄢቇℂᎿቇ⎇ⓥ⑼‛ℂቇኾ᡹
৻ᰴరੑ㊀੤឵ᮨဳߩၮᐩ⁁ᘒߦ߅ߌࠆࠬࡇࡦࠣ࡜ࠬ
PS-7 ᫪ਅ ᔀ਽ ↥ᬺᛛⴚ✚ว⎇ⓥᚲ⸘▚⑼ቇ⎇ⓥㇱ㐷
ࠕࡕ࡞ࡈࠔࠬ෸߮ㆊ಄ළᶧ૕ Si ߩ᭴ㅧᄌൻ㧦╙৻ේℂ MD ߦࠃࠆ Si ߩࡐ࡝ࠕࡕ࡞ࡈࠖ࠭ࡓߩ⸃᣿
PS-8 ↰Ꮉ ᢥ㓉 ਻Ꮊᄢቇᄢቇ㒮ℂቇᐭಝ❗♽⑼ቇኾ᡹
ࠟ࡜ࠬᒻᚑ‛⾰ߦ߅ߌࠆ㕖✢ᒻࠛࡀ࡞ࠡ࡯ᔕ╵ߣⶄ⚛Ყᾲ
PS-9 Ꮉ੗ ᷡม ⁛┙ⴕ᡽ᴺੱ㘩ຠ✚ว⎇ⓥᚲ
‐ⴊᷡࠕ࡞ࡉࡒࡦߩࠟ࡜ࠬォ⒖ߦ෸߷ߔ᳓ಽ฽㊂ߩᓇ㗀
PS-10 ਈ㇊Ꭸ ੫ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ
ࡆࠗࡒ࠳࠱࡯࡞ဳ㊄ዻ㍲૕ᄙሹ⾰⚿᥏ౝߩ࠙ࠜ࡯࠲࡯࠽ࡁ࠴ࡘ࡯ࡉߩ࠳ࠗ࠽ࡒࠢࠬ
PS-11 ᨴ⼱ ᱞ♿ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ
ࠗࠝࡦࠥ࡞PMMA/EMITFSIߩࠟ࡜ࠬォ⒖ߣࠗࠝࡦ᜛ᢔᯏ᭴
PS-12 ዊ⷏ 㓉჻ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ
ࠟ࡜ࠬォ⒖᷷ᐲઃㄭߢߩ⚿᥏ൻ᜼േ
PS-13 ᣂ⼱ ኡ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ
⚿᥏⊛ਛ〒㔌⒎ᐨߣേ⊛ਇဋ৻ᕈߩ㑐ㅪ
PS-14 Ꮉፒ ⁴ผ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ
ࠦࡠࠗ࠼ࠟ࡜ࠬߦ߅ߌࠆേ⊛ਇဋ৻ᕈ
PS-15 ᷰㄝ ᢘม ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ
㚟േਅ 2 ᰴ☳☸૕♽ߩ⁁ᘒㆫ⒖
=================================================
28
΄ρΑഢ֊͈ুဇ΀ΥσΆȜρϋΡΑΉȜίຝ௨!
਻ᄢ㒮ℂ ዊ↰၂ ቁ
⥄↱ࠛࡀ࡞ࠡ࡯࡜ࡦ࠼ࠬࠤ࡯ࡊឬ௝ߪ‫ࠬ࡜ࠟޔ‬ォ⒖ߩേ⊛߅ࠃ߮ᾲജቇ⊛․ᓽࠍ⛔৻⊛ߦ⺑᣿ߔࠆ⠨߃ᣇߣߒߡᵈ⋡ߐ
ࠇߡ޿ࠆ‫ߦ⺰⽎⃻ߩߢ߹ࠇߎߕ߹ޕ‬ၮߠߊ⚿ᨐࠍ᭎ⷰߒ‫ߢ޿ߟޔ‬ኒᐲ᳢㑐ᢙℂ⺰ࠍ↪޿ߚ࡜ࡦ࠼ࠬࠤ࡯ࡊߩ᭴▽߅ࠃ߮ߘ
ߩ․ᓽߦߟ޿ߡ⺑᣿ߔࠆ‫ࠬ࡜ࠟޕ‬ォ⒖ߩᧄ⾰⺰⊛ߥℂ⸃ߦะߌߡ‫ޔ‬ㆃ޿✭๺࡮ㅦ޿✭๺߇޿߆ߦℂ⸃ߐࠇࠆ߆߹ߚ੹ᓟߩ
ᣇะᕈߦߟ޿ߡ⠨ኤࠍⴕ߁‫ޕ‬
΄ρΑഢ֊̠͂̈́͜ͅညഩ۱გ! Ƚ৽۱გً೾͂໗۱გً೾Ƚ!
ർᄢℂ ㊁፸ 㦖੺
ࠟ࡜ࠬォ⒖ߣߪ‫⚿ޔ‬᥏ൻߣ޿ߞߚ᣿⍎ߥ᭴ㅧᄌൻࠍ઻߁ߎߣߥߊᶧ૕߇⎬ߊߥࠆ⃻⽎ߢ޽ࠆ‫ޕ‬ᶧ૕㧙ㆊ಄ළᶧ૕㧙ࠟ࡜
ࠬߣ޿߁಄ළㆊ⒟ߢ᭴ㅧߦᄢߒߚᄌൻߪߥ޿߇‫☼ޔ‬ᕈ₸ߩࠃ߁ߥേ⊛ࡄ࡜ࡔ࡯࠲ߪචᢙᩴએ਄߽ᄌൻߔࠆ‫ޕ‬ᭂᕈ‛⾰ߢߪ‫ޔ‬
ߎߩࠃ߁ߥേ⊛஥㕙ߪ⺃㔚✭๺ㆊ⒟ߣߒߡ⎇ⓥߔࠆߎߣ߇ߢ߈ࠆ‫⺃ޔ߽ߡߞ⸒ߪߣޕ‬㔚✭๺๟ᵄᢙ߇૗ᩴ߽ᄌൻߔࠆ࠳ࠗ
࠽ࡒࠢࠬߩో⽩ࠍ⋥ធ᷹ⷰߢ߈ࠆࠃ߁ߦߥߞߚߩߪᦨㄭߩߎߣߢ‫ޔ‬એ೨ߩ⎇ⓥߢߪᛛⴚ⊛ߦࠞࡃ࡯ߒ߈ࠇߥ޿᷹ቯ๟ᵄᢙ
▸࿐ࠍ᷷ᐲᤨ㑆឵▚஥ߢ⵬ߞߚ‫ࠆ޽ޕ‬๟ᵄᢙߦ߅ߌࠆ⺃㔚៊ᄬ޽ࠆ޿ߪ៊ᄬ₸ߩ᷷ᐲଐሽᕈࠍ᷹ቯߔࠆߣ‫ޔ‬᷷ᐲߩૐਅߣ
ߣ߽ߦⶄᢙߩ⺃㔚⇣Ᏹ
⺃㔚✭๺ㆊ⒟߇᷹ⷰߐࠇࠆ‫✭ޕ‬๺ㆊ⒟ߦߪ⃻ࠇࠆ㗅⇟ߦα‫ޔ‬β‫ޔ‬γ㩷 䊶䊶䊶ߣ⸥ภࠍ߰ߞߡ޿ߞߚ‫ߘޕ‬
ߩᓟ‫ޔ‬᥉ㆉ⊛ߦ߆ߟ᣿⍎ߦ᷹ⷰߐࠇࠆα✭๺ㆊ⒟ߪ㕖ࠕ࡟࠾࠙ࠬㆊ⒟ߢ‫☼ޔ‬ᕈ₸ߥߤߦኻᔕߒߡ޿ࠆࠟ࡜ࠬォ⒖ߦ⋥ធ߆
߆ࠊߞߡ޿ࠆ߽ߩߣࠊ߆ߞߚ‫ࠍࠇߘޕ‬ਥ✭๺ㆊ⒟ߣ๭߮‫ࠅࠃࠇߘޔ‬ૐ᷷஥
㜞๟ᵄ஥ߦ⃻ࠇࠆࠕ࡟࠾࠙ࠬㆊ⒟ࠍ೽✭๺ㆊ
⒟ߣ๭߱ࠃ߁ߦߥߞߚ‫ޕ‬ೋᦼߩ⎇ⓥߢߪᔕ↪਄ߩ㊀ⷐᕈ߆ࠄ㜞ಽሶ‛⾰߇ᄙߊขࠅ਄ߍࠄࠇ‫ⶄޔ‬ᢙ⷗ߟ߆ߞߚ೽✭๺ㆊ⒟
ߪಽሶౝ⥄↱ᐲߣ⚿߮ઃߌࠄࠇࠆߎߣ߇ᄙ߆ߞߚ‫ߩߘޕ‬ᓟ‫⎇ޔ‬ⓥߐࠇࠆ‛⾰ᢙ߇㘧べ⊛ߦჇᄢߒ‫ޔ‬න⚐ߥಽሶߦ߽೽✭๺
߇޽ࠆߣ޿߁௑ะ߿ౝㇱ⥄↱ᐲ߇ߥ޿ಽሶߦ߽೽✭๺߇᷹ⷰߐࠇࠆߎߣ߽ࠊ߆ߞߚ‫⃻ޕ‬࿷ߢߪ‫ޔ‬᥉ㆉ⊛ߦሽ࿷ߔࠆ೽✭๺
ㆊ⒟ࠍ JG βㆊ⒟
Johari ߣ Goldstein ߩೋᦼ⎇ⓥ߆ࠄ)‫ࠇߘޔ‬એᄖࠍ non-JG βㆊ⒟ߣ඙ಽߌߔࠆߎߣ߇ᄙ޿‫ߩࠄࠇߎޕ‬ಽ
ሶ⺰⊛⿠Ḯߢ޽ࠆ߇‫ޔ‬ਥ
αㆊ⒟ߪಽሶߩදหㆇേߢ non-JG βㆊ⒟ߪಽሶౝ⥄↱ᐲߣ޿߁⹺⼂߇৻⥸⊛ߢ޽ࠆߣᕁࠊࠇ
ࠆ‫৻ޕ‬ᣇ‫ޔ‬JG βㆊ⒟ߦߟ޿ߡߪ㑐ਈߒߡ޿ࠆಽሶߩഀวߩ⼏⺰߽฽߼ߡ޿ߊߟ߆ߩឭ᩺޽ࠆ߇‫ޔ‬αㆊ⒟ߣߣ߽ߦࠟ࡜ࠬォ
⒖ߦᧄ⾰⊛ߢ޽ࠆߣ޿߁ᦨㄭߩਥᒛߪᵈ⋡ߐࠇࠆ‫ޕ‬
‫أ‬ഽ་಺߿ DSC ͬဥ̞̹ςΙ;θγ;ॸ‫΄؂‬ρΑࠏ͈‫ڐ‬ಫঐତ߿۱გ͈ࡄ‫!ݪ‬
╳ᵄᄢᢙℂ‛⾰⑼ቇ⎇ⓥ⑼ ᧻↰ ⵨‫ޔ‬ᏓᎹ ᵏノ‫ޔ‬ᳰ ␭ᴦ‫ޔ‬ዊፉ ⺈ᴦ
ᶧ૕-ࠟ࡜ࠬォ⒖⃻⽎ߦ߅ߌࠆᧂ⸃᳿ߥ໧㗴ߩ 1 ߟߣߒߡ‫ޔ‬ਥ✭๺
α✭๺ߩ✭๺㑐ᢙ߇㕖ᜰᢙ㑐ᢙߣߥࠆߎߣ߇޽ߍ
ࠄࠇࠆ‫⚻ޕ‬㛎⊛ߦߪ‫ޔ‬᜛ᒛဳᜰᢙ㑐ᢙ
Stretched exponential‫ ߪߊߒ߽ޔ‬Kohlrausch-Williams-Watts(KWW) 㑐ᢙߣ
๭߫ࠇࠆ㑐ᢙߢ‫ߊ߹߁ޔ‬ౣ⃻ߢ߈ࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ‫✭ޔߪࠇߎޕ‬๺ᤨ㑆ߩಽᏓߣ㑐ㅪ߇޽ࠆߣ⠨߃ࠄࠇࠆ߇‫⿠ߩߘޔ‬
Ḯߦߟ޿ߡߪ߹ߛ᣿ࠄ߆ߦߪߥߞߡ޿ߥ޿‫⎇ᧄޕ‬ⓥߢߪ‫㉄࠙ࡎࡓ࠙࠴࡝ޔ‬Ⴎࠟ࡜ࠬߩㆊ಄ළ⁁ᘒߦ߅ߌࠆࠟ࡜ࠬォ⒖ὐㄭ
றߩᾲ✭๺ࠍ᷷ᐲᄌ⺞ဳ␜Ꮕ⿛ᩏᾲ㊂⸘
MDSCߦࠃߞߡ᷹ⷰߒ‫ޔ‬KWW 㑐ᢙߩࡄ࡜ࡔ࡯࠲ߢ޽ࠆβ (KWW)ߩ⚵ᚑଐሽ
ᕈࠍ⺞ߴߚ‫ޕ‬MDSC ߪ 1993 ᐕߦታ↪ൻߐࠇߚᲧセ⊛ᣂߒ޿ታ㛎ᚻᴺߢ޽ࠆ‫ޕ‬ㅢᏱߩ DSC ߢ↪޿ࠄࠇࠆ࡝࠾ࠕ࡯᣹᷷
㒠᷷ߩ਄ߦࠨࠗࡦဳߩ᷷ᐲᵄࠍ㊀⇥ߒߚ᣹᷷㒠᷷ࡊࡠࠣ࡜ࡓ߇↪޿ࠄࠇࠆ‫ޕ‬᷷ᐲᄌ⺞ߦኻߔࠆᔕ╵߆ࠄേ⊛ᗵฃ₸ߣߒ
ߡ‫⚛ⶄޔ‬Ყᾲኈ㊂ࠍ᷹ⷰߔࠆߎߣ߇ߢ߈ࠆ‫ޕ‬ታ㛎ⵝ⟎ߣߒߡ‫ޔ‬TA Instruments ␠ߩ DSC2920 ࠍ↪޿ߚ‫ࠆߥߣࠬ࡯ࡌޕ‬
࡝࠾ࠕ࡯᣹᷷᷷ᐲ 1͠/min ߦኻߒߡ‫ޔ‬๟ᦼ 100 ⑽࡮ᝄ᏷r1͠ߩࠨࠗࡦᵄࠍ㊀⇥ߒߚ‫ⷰޕ‬᷹ߐࠇߚⶄ⚛Ყᾲߩታㇱߣ⯯ㇱ
ߩ Cole-Cole ࡊࡠ࠶࠻ࠍⴕ޿‫ޔ‬Havriliak-Negami(HN) ᑼߢ⸃ᨆߒߚ
ᵈ㧦ߎߎߢߪ♽ߦട߃ࠆ᷷ᐲᵄߩ๟ᵄᢙࠍ࿕ቯߒ
ߡ‫ޔ‬᷷ᐲ
✭๺ᤨ㑆ࠍ⿛ᩏߒߡ޿ࠆ‫ޕ‬ታ㛎⚿ᨐߪ HN ᑼߦࠃࠅ‫ߊࠃޔ‬ౣ⃻ߐࠇߚ‫ޕ‬HN ᑼߩࡄ࡜ࡔ࡯࠲߆ࠄ‫ޔ‬β (KWW)
ߩ୯ࠍ᳞߼‫⚵ߩߘޔ‬ᚑଐሽᕈࠍ⺞ߴߚ‫ޕ‬LiB-G ߢߪ‫ޔ‬ᷝടߔࠆࠕ࡞ࠞ࡝㊄ዻߩ㊂ߦᔕߓߡ‫ߩ⚛࠙ࡎޔ‬㈩૏ᢙ߇ 3 ߆ࠄ 4
ߦᄌൻߒ‫ߡߞ઻ߦࠇߘޔ‬᭴ㅧන૏߇ᄌൻߔࠆߎߣ߇ႎ๔ߐࠇߡ޿ࠆ‫ޕ‬LiB-G ࠍ᭴ᚑߔࠆࡎ࠙⚛ߩ㈩૏ᢙᄌൻߣβ (KWW)
ߩ㑆ߦ᣿⏕ߥ⋧㑐㑐ଥ߇޽ࠆߎߣࠍ⷗޿ߛߒߚ‫ޕ‬
29
‫أ‬ഽ་಺༹ͥࣞ͢ͅ໦ঊ΄ρΑ͈෎ယၾ͂ཛྷಫၚ͈൳শ௶೰!
੩Ꮏ❫ᄢ ₎ጊ 㕏ᄦ‫┻ޔ‬Ꮉ ᶈม‫ޔ‬ᷓየ ᶈᰴ
ࠟ࡜ࠬォ⒖᷷ᐲߦ߅޿ߡ‫ޔ‬ᾲኈ㊂‫⤘ޔ‬ᒛ₸߇㓏Ბ⊛ߦᄌൻߔࠆߎߣߪࠃߊ⍮ࠄࠇߡ޿ࠆ‫ߩࠄࠇߎޕ‬㊂ߪ‫ࠬ࡜ࠟޔ‬ォ⒖ࠍ
․ᓽߠߌࠆࠬࡠ࡯࠳ࠗ࠽ࡒ࠶ࠢࠬߩ޽ࠄࠁࠆࡕ࡯࠼ߦ⋥ធߦ㑐ଥߒߡ޿ࠆߣ⠨߃ࠄࠇࠆ‫ߩߎޕ‬ὐߢ‫․ޔ‬ቯߩᔕജߣᄌᒻࠍ
⚿߮ߟߌࠆᒢᕈ₸‫ߪ޿ࠆ޽ޔ‬㔚᳇෺ᭂሶߩㆇേࡕ࡯࠼ߦᵈ⋡ߔࠆ⺃㔚₸ߦᲧߴߡ‫ࠅࠃޔ‬ᐢ▸ߥㆇേࠍ෻ᤋߒߡ޿ࠆߣ⸒߃
ࠆ‫ޕ‬ᓥߞߡ‫ޔ‬ᾲኈ㊂ߣ⤘ᒛ₸ߩᲧセߪ‫⎇ߩࠬࠢ࠶ࡒ࠽ࠗ࠳࡯ࡠࠬޔ‬ⓥߦ᦭↪ߥᖱႎࠍਈ߃ࠆ߽ߩߣᦼᓙߐࠇࠆ߇‫ࠆߥ⇣ޔ‬
‛ᕈ㊂ߩᲧセߦߪ‫ޔ‬Ᏹߦ⹜ᢱߩᾲጁᱧߩห৻ᕈ߇໧㗴ߦߥࠆ‫ޕ‬หᤨ᷹ቯߪ‫ߩߎޔ‬໧㗴ߦኻߔࠆᦨ߽ലᨐ⊛ߥ⸃᳿ᴺߢ޽ࠆ‫ޕ‬
ᧄ⎇ⓥߢߪ‫ޔ‬᷷ᐲᄌ⺞ᴺࠍ೑↪ߒߚᾲኈ㊂ߣ⤘ᒛ₸ߩหᤨ᷹ቯⵝ⟎ࠍ㐿⊒ߒ‫ࠬ࡜ࠟߩࡦ࡟࠴ࠬ࡝ࡐޔ‬ォ⒖ߦㆡ↪ߒߚ‫ᧄޕ‬
ႎ๔ߢߪ‫ࠣࡦࠫࠗࠛޔ‬ലᨐߦᵈ⋡ߒߡ‫ޔ‬᷹ቯ⚿ᨐࠍ␜ߔߎߣߦߒߚ޿‫ޕ‬
΄ρΑ‫ͥ͢ͅا‬૒໤ࠔೀ͈༗ం!
⁛ㄘᬺ↢‛⾗Ḯ⎇ⓥᚲ ↰ਛ ᄢ੺
ᬀ‛ㆮવ⾗Ḯߩ㐳ᦼ଻ሽᴺߪ‫ޔ‬⒳ሶߦࠃࠆ߽ߩ߇৻⥸⊛ߢ޽ࠆ‫ޔߪࠇߘޕ‬Ᏹ᷷ਅߦ߅޿ߡ⚵❱⚦⢩߇ࠟ࡜ࠬ⁁ᘒߦ޽ࠆ
ߚ߼▤ℂ⁁ᘒߐ߃⦟ߌࠇ߫㐳ᦼ଻ሽน⢻ߛ߆ࠄߢ޽ࠆ‫ޔࠄ߇ߥߒ߆ߒޕ‬⒳ሶߢ଻ሽߢ߈ߥ޿ᬀ‛ߪ਎⇇ਛߦᄙߊሽ࿷ߔࠆ‫ޕ‬
ᾲᏪ࿾ၞߩᬀ‛ߩᄙߊߪ⒳ሶ߇᷷ᐲᄌൻ߿ੇ῎ߦ⠴߃ࠄࠇߥ޿ߚ߼଻ሽ߇㔍ߒߊ̈㔍⾂⬿ᕈ⒳ሶ̉ߣ๭߫ࠇࠆ‫ࠗޔߚ߹ޕ‬
ࡕࠍߪߓ߼ߣߒߚᩕ㙃❥ᱺᕈᬀ‛߿‫ޔ‬ᩕ㙃❥ᱺߢߒ߆ㄘᬺ⊛ఝ⦟ᒻ⾰ࠍ⛽ᜬߢ߈ߥ޿ᨐ᮸㘃ߩ㐳ᦼ଻ሽᴺߪ‫ޔ‬ታ㓙ߦ᮸ᧁ
߿૞‛ࠍ᫪߿⇌ߢᩱၭߒߥߌࠇ߫ߥࠄߕ଻ሽ߇࿎㔍ߢ޽ࠆ‫ߩࠄࠇߎޕ‬ㆮવ⾗Ḯߦ଻ሽ㊀ⷐᕈߩఝవ㗅૏ࠍߟߌߚ႐ว‫ޔ‬਎
⇇ߢਥߦ㘩ߴࠄࠇߡ޿ࠆ޿ߊߟ߆ߩ૞‛⒳޽ࠆ޿ߪᨐ᮸㘃ߦ⛉ࠄࠇߡߒ߹߁‫ᧂޕ‬೑↪ㆮવ⾗Ḯߦߪ‫ޔ‬ක⮎ຠߩᚑಽߦߥࠆ
ࠃ߁ߥ੍ᗐ߽ߟ߆ߥ޿ଔ୯ࠍᜬߟ߽ߩ߽฽߹ࠇࠆ‫ޕ‬ᣢሽߩᬀ‛⚦⢩ߩ⿥ૐ᷷଻ሽߩ⎇ⓥߢߪ‫ޔ‬ᶧ૕⓸⚛ਛߦ଻ሽߐࠇࠆᬀ
‛᧚ᢱߩ⁁ᘒ߿⚦⢩ߩ↢ᱫߣ㑐ㅪߒߚᒻᘒ⊛ᄌൻߥߤߦߟ޿ߡߪ‫⸃ߊోޔ‬ᨆ߇߅ߎߥࠊࠇߡߎߥ߆ߞߚ‫ޕ‬ᬀ‛⒳ࠍ໧ࠊߕ
㜞޿↢ሽ₸ࠍ⛽ᜬߢ߈ࠆ଻ሽᴺࠍ㐿⊒ߔࠆߚ߼ߦߪ‫⚦ޔ‬⢩ߩᶧ૕⓸⚛଻ሽᤨߩᔕ╵ߦ㑐ߔࠆၮ␆⊛⍮⷗ࠍᓧߚᓟ‫ޔ‬ല₸⊛
ߦᄙߊߩ⒳
޽ࠆ޿ߪ‫ޔ‬ຠ⒳࡮♽⛔ࠍ଻ሽߢ߈ࠆ᥉ㆉ⊛ߢ◲ଢߥᣇᴺߩ⸳ቯࠍ߅ߎߥ߁ߎߣ߇ᔅ㗇ߢ޽ࠆ‫ޔߢߎߘޕ‬ᶧ૕
⓸⚛ਛߩ-196͠ߢ଻ሽߐࠇࠆᬀ‛⨍㗂ߩ⚦⢩ᓸ⚦᭴ㅧᄌൻࠍ⺞ߴࠆߚ߼‫ࠬ࡜ࠟޔ‬ൻᴺ߅ࠃ߮ࡆ࡯࠭ࠟ࡜ࠬൻᴺߦࠃࠆ⿥ૐ
᷷଻ሽㆊ⒟ߩᲑ㓏೎᧦ઙࠍᄌ߃ߡ‫⿥ޔ‬ૐ᷷ಣℂߒߚ⨍㗂ࠍ㔚ሶ㗼ᓸ㏜ߦࠃߞߡ‫⿥ޔ‬ૐ᷷ਅߦ߅ߌࠆ⚦⢩ߩ↢ሽߣᓸ⚦᭴ㅧ
ߥࠄ߮ߦ⚦⢩ౝߩ᳓ߩ᜼േߦߟ޿ߡ⸃ᨆࠍ߅ߎߥߞߚ‫⚿ߩߘޕ‬ᨐ‫⚦ޔ‬⢩ౝ߆ࠄߩ⣕᳓߇ਇචಽߥ႐วߦߪ‫ޔ‬಄ළਛߦ⚦⢩
ౝߦᄢ߈ߥ᳖᥏߇ήᢙߦᒻᚑߐࠇ‫⚦ޔ‬⢩ౝߦਇนㅒ⊛ߥ‛ℂ⊛்ኂࠍᒁ߈⿠ߎߒߡ޿ࠆߎߣ߇ಽ߆ߞߚ‫৻ޕ‬ᣇ‫ࠬ࡜ࠟޔ‬ൻ
ṁᶧࠍㆡᒰߥᤨ㑆ಣℂߒ↢ሽ₸ࠍ㜞ߊ଻ߟߣ‫ޔ‬ේᒻ⾰ಽ㔌߇⿠ߎࠅ⚦⢩ౝߦዊ⢩ᒻᚑ߇⹺߼ࠄࠇࠆ߽ߩߩ⚦⢩ౝߦߪోߊ
᳖᥏ߪⷰኤߐࠇߥ޿ߎߣ߆ࠄ‫⚦ޔ‬⢩߇ࠟ࡜ࠬൻߒߡ޿ࠆߣ⠨߃ࠄࠇߚ‫ޕ‬
΄ρΑഢ֊͈໦ঊΘͼ΢η·ᾼࡉͥ୆ྵ࡛ય͈൲എளً೾!
ർᄢℂ ⬉ญ ޽ࠁߺ‫ޔ‬㊁፸ 㦖੺
↢๮ߩ⿠Ḯ޽ࠆ޿ߪߘߩሽ࿷ߩ໧㗴ߪ‫↢ޔ‬๮ߩሽ࿷ࠍ೨ឭߦ⼏⺰ߔࠆߎߣߪ಴᧪ߥ޿ߩߢ‫‛ޔ‬ℂቇ߿ൻቇߩ໧㗴ߢ޽ࠆ‫ޕ‬
ߟ߹ࠅ‫ޔ‬නߦ↢‛ࠍជࠅਅߍߡ޿ߊߩߢߪߥ޿‫ޔ‬ಽሶ࡟ࡌ࡞ߩ‛ᕈ‛ℂቇ⊛޽ࠆ޿ߪൻቇ⊛ࠕࡊࡠ࡯࠴߇ᔅⷐߢ޽ࠆ‫ޔ♧ޕ‬
♧ࠕ࡞ࠦ࡯࡞‫ޔ࠼ࠪࠝ࡟ࠢ࠿ޔ㉄ࡁࡒࠕޔ‬⢽⾰ߣ޿ߞߚ↢๮⃻⽎ࠍᡰ߃ࠆၮᧄಽሶ‫ߩࠄࠇߎߪ޿ࠆ޽ޔ‬಴⊒ൻว‛ߩ⿠Ḯ
ߦኻߔࠆൻቇ⊛ࠕࡊࡠ࡯࠴ߪ㐳޿ᱧผࠍ߽ߟ‫ᦨޕ‬ㄭߢߪߎࠇࠄߩ࿾⃿ᄖวᚑࠍ␜ߔ⎇ⓥᚑᨐ߇ᄙ޿‫৻ޕ‬ᣇ‫‛ߩߢ߹ࠇߎޔ‬
ℂቇ⊛ࠕࡊࡠ࡯࠴ߪ‫ޔ‬᭴ㅧ
࡝ࡦ⢽⾰㧙᳓♽ߩ⥄Ꮖ⚵❱ൻߥߤ߿ᖱႎ
ࠥࡁࡓࠍਛᔃߦⴕࠊࠇߡ߈ߚ‫↢ޔߒ߆ߒޕ‬๮⃻⽎
ߪᧄ⾰⊛ߦേ⊛ㆊ⒟ߢ޽ࠅ‫⎇ߩࠬࠢࡒ࠽ࠗ࠳ߩߘޔ‬ⓥߪ‫↢ޔ‬๮ߩ⿠Ḯ޽ࠆ޿ߪߘߩሽ࿷ߩ໧㗴ࠍ⸃᣿ߔࠆߚ߼ߦᔅⷐਇน
ᰳߢ޽ࠆ‫ߩߎޕ‬႐ว‫↢ޔ‬๮⃻⽎ࠍᡰ߃ࠆၮᧄಽሶ߇૞ࠆන⚐ߥ♽ߩಽሶ࠳ࠗ࠽ࡒࠢࠬࠍ⺞ߴࠆߎߣ߇㊀ⷐߢ޽ࠆ‫ߥߗߥޕ‬
ࠄ‫ޔ‬ၮᧄಽሶߩߺ߇㑐ࠊࠆ࠳ࠗ࠽ࡒࠢࠬߪ‫↢ޔ‬๮⃻⽎ߩേ⊛⚛ㆊ⒟ߣ޿߁᭎ᔨߦ⚿߮ߟߊ߆ࠄߢ޽ࠆ‫ޕ‬
♧ࠕ࡞ࠦ࡯࡞ߣ᳓ߩ♽ߪ‫↢ޔ‬๮ߩၮ⋚ࠄߒߐࠍᄬࠊߥ޿ᦨ߽න⚐ߥ♽ߩ৻ߟߢ޽ࠆ‫ߩߘޕ‬ಽሶ࠳ࠗ࠽ࡒࠢࠬࠍ‫ޔ‬ਥߣߒ
ߡ⿥ᐢᏪၞ⺃㔚ಽశᴺߦࠃࠅᄙⷺ⊛ߦ⎇ⓥߒߚ⚿ᨐ‫⋧ߩߘ࡮࡞࡯ࠦ࡞ࠕ♧ޔ‬੕ᷙว♽࡮᳓ᷙว♽ߩࠟ࡜ࠬォ⒖ߦ㑐ࠊࠆಽ
ሶ࠳ࠗ࠽ࡒࠢࠬߪ‫ޔ‬᷷ᐲߛߌߢߥߊಽሶ㊂࡮ᐔဋಽሶ㊂࡮᳓฽᦭㊂ߥߤߩ⇣ߥࠆࡄ࡜ࡔ࡯࠲࡯ߢ೙ᓮߐࠇࠆߎߣ߇ಽ߆ߞ
30
ߚ‫࡞࡯ࠦ࡞ࠕ♧ޕ‬ᷙว♽ߦ߅ߌࠆࡃ࡞ࠢߣ⇇㕙ㄭறߦ߅ߌࠆಽሶ࠳ࠗ࠽ࡒࠢࠬߩ㆑޿ߪ‫ޔ‬᳓ಽ㊂߿ᐔဋಽሶ㊂ߩ㆑޿ߣ⛔
৻⊛ߦℂ⸃ߔࠆߎߣ߇಴᧪‫ߩ‛↢ޔߪࠬࠢࡒ࠽ࠗ࠳ߩߘޔ‬᭽‫ߥޘ‬႐㕙ߦขࠅㄟ߹ࠇߡ޿ࠆߣ⠨߃ࠆߎߣ߇಴᧪ࠆ‫ޔߪࠇߎޕ‬
↢๮߇ㆊ಄ළᶧ૕ߩࠟ࡜ࠬォ⒖ߦ㑐ࠊࠆಽሶ࠳ࠗ࠽ࡒࠢࠬࠍᏁߺߦ೑↪ߒߡ޿ࠆߎߣࠍ␜ໂߔࠆ‫ޕ‬
ౙ଼֚໦̥ͣ̈́ͥ໦ঊ଻‫ס‬ఘ͈‫ס‬ఘȆ‫ס‬ఘഢ֊̷͈͂΅ΥΞͻ·Α!
᧲ᄢ↢⎇ ↰ਛ ⡸‫ޔ‬ᩙ↰ ⃍
ᶧ૕ߪ‫ੂޔ‬㔀߆ߟ৻᭽ߥ☸ሶ㈩೉ࠍ߽ߟ‫ޔ‬᳇૕એᄖߢߪ໑৻ߩ‛⾰ߩᾲജቇ቟ቯ⋧ߢ޽ࠆߣ⠨߃ࠄࠇߡ߈ߚ‫ᦨޕ‬ㄭߎߩ
Ᏹ⼂ߦ෻ߒ‫ޔ‬න৻ේሶ߹ߚߪಽሶ⒳߆ࠄߥࠆ‛⾰ߦ‫ޔ‬2 ߟએ਄ߩᶧ૕⁁ᘒ߇ሽ࿷ߔࠆߎߣࠍ␜ໂߔࠆታ㛎⚿ᨐ߇ႎ๔ߐࠇ
ߡ޿ࠆ‫ߥ߁ࠃߩߎޕ‬ᶧ૕⁁ᘒ㑆ߩ৻ᰴ⋧ォ⒖ߪᶧ૕࡮ᶧ૕⋧ォ⒖ߣ๭߫ࠇࠆ‫ޕ‬ᚒ‫ᦨޔߪޘ‬ㄭ੝ῂ㉄࠻࡝ࡈࠚ࠾࡞
TPP‫ޔ‬
n-ࡉ࠲ࡁ࡯࡞ߣ޿ߞߚන৻ಽሶ⒳߆ࠄߥࠆ᦭ᯏᶧ૕ߦ߅޿ߡ‫ޔ‬ಽሶᕈᶧ૕ߣߒߡߪೋ߼ߡߩᶧ૕࡮ᶧ૕ォ⒖ࠍ⊒⷗ߒߚ‫ޕ‬
ߐࠄߦ‫ޔ‬ታ㓙ߦᶧ૕ I ߇ᶧ૕ II ߦᄌൻߔࠆㆊ⒟ࠍ⋥ធⷰኤߔࠆߎߣߦᚑഞߒ‫ߩߘޔ‬ォ⒖᭽ᑼߦ‫ޔ‬ᩭᒻᚑ࡮ᚑ㐳᭽ᑼߣࠬ
ࡇࡁ࡯࠳࡞ಽ⸃᭽ᑼ߇ሽ࿷ߔࠆߎߣࠍ⷗಴ߒߚ‫ޕ‬೨⠪ߩ႐ว‫ޔ‬ᶧ૕ I ߩਛߦᶧ૕ II ߇ዊߐߥᩭߣߒߡ಴⃻ߒߘࠇ߇ᚑ㐳
ߔࠆߎߣߢᦨ⚳⊛ߦᶧ૕ I ߇ోߡᶧ૕ II ߦߥࠆ‫ߦࠇߎޕ‬ኻߒᓟ⠪ߢߪ‫ޔ‬ᶧ૕ I ో૕߇ਇ቟ቯൻߒ‫ޔ‬ㅪ⛯⊛ߦᓢ‫ߦޘ‬ᶧ૕
II ߦᄌൻߔࠆ‫⥝ߩߎޔߪߢߎߎޕ‬๧ᷓ޿⃻⽎ߦߟ޿ߡߩᦨᣂᖱႎࠍ⚫੺ߔࠆߣߣ߽ߦ‫ࠬ࡜ࠟޔ‬ォ⒖⃻⽎ߥߤᶧ૕ߦ߅ߌ
ࠆઁߩᧂ⸃᣿⃻⽎ߣߩ㑐ଥߦߟ޿ߡ߽⼏⺰ߔࠆ੍ቯߢ޽ࠆ‫ޕ‬
೩ྟഽକ͉͂‫ !̥ة‬ȡକ͈අ։̈́໤଻͈࡙ܳͬౝͥȡ!
!
ฬฎደᄢቇ‛⾰⑼ቇ࿖㓙⎇ⓥ࠮ࡦ࠲࡯ ᧻ᧄ ᱜ๺
᳓ߪᢙᄙߊߩ․⇣ߥ‛ᕈࠍᜬߟߎߣߢ⍮ࠄࠇߡ޿ࠆ߇‫ޔ‬ㄭᐕߩ⎇ⓥߦࠃࠅ‫ޔ‬
ߘࠇࠄߩᄙߊߪ‫ޔ‬᳓ߩࡀ࠶࠻ࡢ࡯ࠢᒻᚑᕈߦᏫ⌕ߔࠆߎߣ߇ࠊ߆ߞߡ߈ߚ‫ޕ‬
ᚒ‫ࠢ࡯ࡢ࠻࠶ࡀޔߪޘ‬ᕈᶧ૕ߦ․᦭ߥᶧᶧ⋧ォ⒖‫ߦ․ޔ‬ૐኒᐲᶧ⋧ߦᵈ⋡ߒ‫ޔ‬
ߎߩ⋧߇ߤߩࠃ߁ߥ
ਛ〒㔌⒎ᐨࠍᜬߟߩ߆ࠍ⹦⚦ߦ⺞ߴߚ‫ࡔࠣ࡜ࡈޔߕ߹ޕ‬
ࡦ࠻᭴ㅧࠍቯ⟵ߒߚ‫⚿ߩߘޕ‬ᨐ‫⚿ޔ‬᥏᳖ߩ᭴ㅧ߇ߏߊዋᢙߩࡈ࡜ࠣࡔࡦ࠻ߦಽ
⸃ߢ߈ࠆߩߣห᭽ߦ‫ޔ‬ૐኒᐲ᳓ߩ᭴ㅧߪ‫ߩ࠻ࡦࡔࠣ࡜ࡈޔ‬㓸ว૕ߦಽ⸃ߔࠆߎ
ߣ߇ߢ߈ࠆߎߣ߇ࠊ߆ߞߚ‫ޕ‬ૐኒᐲ᳓․᦭ߩ᭽‫‛ߥޘ‬ᕈ‫ߪ޿ࠆ޽ޔ‬Ᏹ᷷ߩ᳓ߩ
‛ᕈߪ‫ߩ࠻ࡦࡔࠣ࡜ࡈߩߎޔ‬㓸࿅ߩ᭴ㅧ߿࠻ࡐࡠࠫ࡯ߣ⚿߮ߟߌࠄࠇࠆߣ⠨߃
ࠄࠇࠆ‫ޕ‬
ฝ࿑ߦߪૐኒᐲ᳓ࠍࡈ࡜ࠣࡔࡦ࠻ߦಽ⸃ߒߚ߽ߩࠍ␜ߔ‫߇࠻ࡦࡔࠣ࡜ࡈޕ‬ឃ
ઁ⊛ߦⓨ㑆ࠍలႯߒߡ޿ࠆ᭽ሶ߇ࠊ߆ࠆ‫!ޕ‬
!
!
!
඲˴஌໦࢕́ࡉͥକ͈କளࣣࠫ!
ℂ⎇ SPring-8A‫ޔ‬ᐢᄢ B‫᧲ޔ‬ᄢ‛ᕈ⎇ C ේ↰ ᘏਭ A‫ޔ‬ᓼፉ 㜞 A‫ޔ‬㜞ᯅ ୃ B‫ޔ‬ች᎑ ⦟ᴦ A‫ޔ‬ㄆ
ၨ A,C
エ X ✢ๆ෼࡮⊒శಽశߪౝᲖബ⿠ࠍ↪޿ߡర⚛ㆬᛯ⊛ߦଔ㔚ሶ⁁ᘒࠍ⷗ࠆᚻᴺߢ޽ࠅ‫ޔ‬ඨዉ૕߿⿥વዉ૕ߥߤ‫ޔ‬ਥߦ
࿕૕⹜ᢱߩ㔚ሶ⁁ᘒࠍర⚛ᑯ೎ߒߡ⷗ࠆߎߣߩߢ߈ࠆᚻᴺߣߒߡ‫ޔ‬శ㔚ሶಽశߣ⋧⵬⊛ߦ↪޿ࠄࠇߡ߈ߚ‫ޕ‬ᚒ‫⌀ޔߪޘ‬ⓨ
ߣ⋧ᕈߩᖡ޿ṁᶧ⹜ᢱߩエ㨄✢ๆ෼࡮⊒శಽశࠍⴕ߃ࠆࠪࠬ࠹ࡓࠍ SPring-8 ℂ⎇ኾ↪ࡆ࡯ࡓ࡜ࠗࡦ BL17 ߦ᭴▽ߒ‫ޔ‬᳓
෸߮㊀᳓ߩ㔚ሶ⁁ᘒߩ⎇ⓥࠍⴕߞߡ޿ࠆ‫ޕ‬O1s ౝᲖๆ෼࡮⊒శಽశࠍ᳓ߦㆡ↪ߔࠆߣ‫ޔ‬᳓⚛⚿วߦᢅᗵߥ O2p 㔚ሶ⁁ᘒ
ߩᖱႎ߇ᓧࠄࠇࠆ‫ޕ‬O2p ゠㆏ߪ᳓ߣ๟ࠅߩಽሶ
᳓ಽሶࠍ฽߻㑆ߩ⋧੕૞↪ࠍᦨ߽ᒝߊ෻ᤋߔࠆ゠㆏ߢ޽ࠅ‫ޔ‬᳓ߩ᭴ㅧ
ߣኒធߦ㑐ㅪߒߡ᳓⚛⚿วߩᄌൻ‫ޔ‬ṁ⾰ߩ᳓๺߿᳓ߣ⇇㕙ߩ⋧੕૞↪ߥߤߩᖱႎࠍਈ߃ࠆ‫ޕ‬
2002 ᐕߦ Guo ࠄߦࠃߞߡⴕࠊࠇߚ᳓ߩ᷹ቯ[1] ߪ‫ߥࡓ࠳ࡦ࡜ޔ‬᳓๺ߩലᨐߢ᳓ಽሶߩභ᦭゠㆏ߦ᏷߇ߟ޿ߚ߽ߩߣߒ
ߡ⺑᣿ߐࠇߚ߇‫ޔ‬ᚒ‫ߩޘ‬ᓧߚ㜞ಽ⸃⢻ࠬࡍࠢ࠻࡞ߢߪ‫ޔ‬ଔ㔚ሶ࠻࠶ࡊߩ᏷ߩ⁜޿㕖⚿วᕈ゠㆏߇⚂ 0.7eV 㑆㓒ߢ 2 ߟߦ
31
ಽⵚߒ‫ޔ‬ᶧ૕ߩ᳓ߩਛߦ᣿⏕ߦ⇣ߥࠆ 2 ߟߩⅣႺ߇޽ࠆߎߣ߇␜ߐࠇߚ‫ޕ‬᷷ᐲଐሽᕈ෸߮ബ⿠ࠛࡀ࡞ࠡ࡯ଐሽᕈߩ⚿ᨐ
߆ࠄ‫ߪࠄࠇߎޔ‬᳖᭽ߩ 4 ㈩૏ߩ⁁ᘒߣ‫ޔ‬᳓⚛ଏਈ஥ߩ᳓⚛⚿ว߇ಾࠇߚ 2 ߥ޿ߒ 3 ㈩૏ߩ⁁ᘒߢ޽ࠆߎߣ߇ࠊ߆ߞߚ‫ޕ‬
ߐࠄߦ‫ޔ‬᳓ 1 ಽሶ޽ߚࠅߩᐔဋ᳓⚛⚿วᢙ߇⷗Ⓧ߽ࠄࠇ‫ޔ‬3 ࠃࠅ߽ዊߐ޿ߣ޿߁⚿ᨐ߇ᓧࠄࠇߚ‫ޕ‬
⃻࿷ߐࠄߦ⚿᥏᳖‫ࠬࠔࡈ࡞ࡕࠕޔ‬᳖߳ㆡ↪ߔࠆߚ߼ߩࠪࠬ࠹ࡓࠍ᭴▽ਛߢ޽ࠆ‫ޕ‬
[1] J.-H. Guo, Y. Luo, A. Augustsson, J. -E. Rubensson, C. Sathe, H. Agren, H. Siegbahn, and J. Nordgren,
Phys. Rev. Lett. 89, 137402 (2002).
๱ۙખ଻ಎ଻ঊ๱౮଻८၄ͥ͢ͅΗϋΩ·ৗΘͼ΢η·Α͈କგ࢘‫!ض‬
ේሶജᯏ᭴ A‫᧲ޔ‬ᄢಽ↢⎇ B‫ޔ‬ᄹ⦟వ┵ᄢ C
ਛᎹ ᵗ A‫ޔ‬ၔ࿾ ଻᣽ B‫ޔ‬ർየ ᓆᦶ B‫ޔ‬ᩊ↰ ⮍ A‫ޔ‬ㇹ ାᐢ A‫ ޔ‬ጟ ᐙ㓶 A㨮C
࠲ࡦࡄࠢ⾰ߩ࠳ࠗ࠽ࡒࠢࠬߪ๟ࠅߩ᳓๺ⅣႺߦᓇ㗀ࠍฃߌࠆߎߣߪࠃߊ⍮ࠄࠇߡ޿ࠆ‫⎇ᧄޕ‬ⓥߢߪ‫࠽ࠗ࠳⾰ࠢࡄࡦ࠲ޔ‬
ࡒࠢࠬߩ․ᓽߢ޽ࠆࡏ࠰ࡦࡇ࡯ࠢ߿േജቇォ⒖߇᳓๺ߣߤߩࠃ߁ߦ㑐ࠊߞߡ޿ࠆߩ߆ࠍਛᕈሶ㕖ᒢᕈᢔੂߦࠃࠅ⺞ߴߚ‫ޕ‬
ᭂૐ᷷ߢߪ 3㨪4meV ߦࡏ࠰ࡦࡇ࡯ࠢ߇᷹ⷰߐࠇ‫ࠢ࡯ࡇޔ‬૏⟎ߪ᳓๺ߦࠃࠅ㜞ࠛࡀ࡞ࠡ࡯஥߳ࠪࡈ࠻ߔࠆߎߣ߇ಽ߆ߞߚ‫ޕ‬
ࡏ࠰ࡦࡇ࡯ࠢㄭறߩࠬࡍࠢ࠻࡞߇␜ߔ࠲ࡦࡄࠢ⾰ߩૐᝄേࡕ࡯࠼ߪ⺞๺ᝄേ⊛ߢ޽ࠅ‫ߨ߫ߩߘࠄ߆࠻ࡈࠪߩࠢ࡯ࡇޔ‬ቯᢙ
ߪ᳓๺㊂߇ᄙ޿߶ߤᄢ߈ߊߥࠆߣ⸒߃ࠆ‫ߪࠇߎޕ‬᳓⚛⚿วࠍ੺ߒߚ᳓๺᳓ߣ࠲ࡦࡄࠢ⾰ߩ⋧੕૞↪ߦࠃߞߡ࠲ࡦࡄࠢ⾰ߩ
ૐᝄേࡕ࡯࠼ߩࠛࡀ࡞ࠡ࡯࿾ᒻ߇ࠃࠅಲಳߦߥߞߚߎߣߦ⿠࿃ߒ‫ߩࠄ߆ࡦ࡚ࠪ࡯࡟ࡘࡒࠪߪߣߎߩߎޔ‬ℂ⺰⊛ߥ੍᷹
(Y.Joti et al., 2005)ߣ৻⥌ߔࠆ‫৻ޕ‬ᣇ‫ޔ‬᳓๺㊂߇⚂ 0.2(g water/g protein) એ਄ߢ 240K ઃㄭߦ߅޿ߡേജቇォ⒖߇᷹ⷰ
ߐࠇߚ‫ߗߥޕ‬േജቇォ⒖߇᳓๺ଐሽ⊛ߦ↢ߓࠆߩ߆ࠍ⺞ߴࠆߚ߼ߦ‫ޔ‬ਛᕈሶᢔੂߩห૏૕ലᨐࠍ೑↪ߒߡ᳓๺᳓ߩ࠳ࠗ࠽
ࡒࠢࠬࠍ⋥ធ᷹ⷰߒߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ォ⒖᷷ᐲએਅߩૐ᷷ߢߪ᳓๺㊂ߦ㑐ଥߥߊ࠲ࡦࡄࠢ⾰ߣ᳓ಽሶߩំࠄ߉ߩᄢ߈ߐߪ߶
߷หߓߢ޽ߞߚ‫ߚ߹ޕ‬ォ⒖߇↢ߓߥ޿ૐ޿᳓๺㊂ߩ႐วߢߪォ⒖᷷ᐲએ਄ߢ߽߿ߪࠅ࠲ࡦࡄࠢ⾰ߣ߶߷หߓߢ޽ߞߚ‫৻ޕ‬
ᣇ‫ޔ‬േജቇォ⒖߇↢ߓࠆᤨߦߪหᤨߦ᳓๺᳓ߩំࠄ߉߇ᄢ߈ߊߥߞߡ޿ࠆߎߣ߇᣿ࠄ߆ߦߥߞߚ‫ޕ‬㜞޿᳓๺㊂ߢ↢ߓࠆ࠲
ࡦࡄࠢ⾰⴫㕙ߩ᳓ಽሶߩ․⇣⊛ߥ࠳ࠗ࠽ࡒࠢࠬ߇‫ߣ⾰ࠢࡄࡦ࠲ޔ‬᳓ಽሶߩ⇇㕙ߦሽ࿷ߔࠆ᳓⚛⚿วࡀ࠶࠻ࡢ࡯ࠢࠍ੺ߒߡ
࠲ࡦࡄࠢ⾰ߩᝄേࡕ࡯࠼ߣ⋧੕૞↪ߒ‫⚿ߩߘޔ‬ᨐേജቇォ⒖߇↢ߓࠆߣ⠨߃ߡ޿ࠆ‫ޕ‬
౩ฒৗ͈൲എഢ֊͂࢕ΏΈ΢σ਋ယ!
ฬฎደᄢቇ‫▚⸘ޔ‬ℂᎿቇኾ᡹ દ⮮ ৻ੳ‫╣ޔ‬੗ ℂ↢
ᄙߊߩⰮ⊕⾰߇ 200K ೨ᓟߢࠟ࡜ࠬォ⒖ࠍ⿠ߎߔ‫ޔߪࠇߎޕ‬200K ⒟ᐲߦ᷷ᐲ߇਄᣹ߔࠆߎߣߢⰮ⊕⾰᭴ㅧࠁࠄ߉ߩૐ
ᝄേᢙ࡮㐳ᵄ㐳ࡕ࡯࠼ߦ㕖⺞๺⊛ലᨐ߇㗼⪺ߦߥࠅ‫ޔ‬ታല⊛ߥᒢᕈቯᢙ߇ዊߐߊߥࠆ࠰ࡈ࠻ൻ߇↢ߓࠆേ⊛ォ⒖ߢ޽ࠆߣ
⠨߃ࠄࠇߡ޿ࠆ‫ޕ‬ห᭽ߥേ⊛ォ⒖߇Ᏹ᷷ߢߩశๆ෼ߦࠃߞߡ߽↢ߓࠆน⢻ᕈࠍ⠨߃ߚ޿‫ߦ⾰⊕Ⱞޕ‬ઃዻߒߚ⦡⚛߇శሶࠍ
ๆ෼ߒߡബ⿠ߐࠇࠆߣ๟࿐ߩ᭴ㅧߦήℂ߇↢ߓࠆ߇‫✕ߩߎޔ‬ᒛߪૐᝄേᢙ࡮㐳ᵄ㐳ࡕ࡯࠼ߩ࠰ࡈ࠻ൻߦࠃߞߡ✭๺ߐࠇ⥄
↱ࠛࡀ࡞ࠡ࡯߇ૐਅߔࠆ‫࠻ࡈ࠰ޔߦࠄߐޕ‬ൻߪ⦡⚛ߣ㔌ࠇߚ႐ᚲߩㇱಽ⊛ࠕࡦࡈࠜ࡯࡞࠺ࠖࡦࠣߦࠃߞߡᗖ߈⿠ߎߐࠇࠆ
น⢻ᕈ߇޽ࠆ‫ߡߒ߁ߎޕ‬శࠪࠣ࠽࡞ฃኈ߇Ⱞ⊕⾰ਛߩ㔌ࠇߚ႐ᚲࠍࠕࡦࡈࠜ࡯࡞࠼ߔࠆࠪ࠽࡝ࠝߦߟ޿ߡᬌ⸛ߒߚ޿‫ޕ‬
Ώς΃΄ρΑ͈ޫਫ਼ࢹ௮་‫̳ͥ۾ͅا‬໦ঊ൲ႁ‫ڠ‬ΏηντȜΏοϋ!
ᣩ⎣ሶᩣᑼળ␠ਛᄩ⎇ⓥᚲ 㜞↰ ┨
ࠪ࡝ࠞࠟ࡜ࠬߩࠃ߁ߥ྾㕙૕߇ࡀ࠶࠻ࡢ࡯ࠢࠍ᭴ᚑߔࠆࠟ࡜ࠬߦߪኒᐲ⇣Ᏹ‫ޔ‬૕Ⓧᒢᕈ₸⇣Ᏹ╬ߩቇⴚ⊛ߦ߽Ꮏᬺ⊛ߦ
߽⥝๧ᷓ޿․ᕈ߇ᄙ޿‫ޕ‬ኒᐲ⇣Ᏹߪ᷷ᐲ਄᣹ߣߣ߽ߦ⤘ᒛଥᢙ߇⽶ߣߥࠆ⃻⽎ߢ޽ࠅ‫ޔ‬૕Ⓧᒢᕈ₸⇣Ᏹߪ૕Ⓧᒢᕈ₸߇᷷
ᐲ਄᣹ߣߣ߽ߦჇടߒ‫ޔ‬࿶ജ⽶⩄ߣߣ߽ߦᷫዋߔࠆ⃻⽎ߢ޽ࠅ‫ޔ‬ㅢᏱߩ᧚ᢱߣߪㅒߩᝄࠆ⥰޿ࠍ␜ߔߎߣ߇⍮ࠄࠇߡ޿ࠆ‫ޕ‬
ᦨㄭ㐿⊒ߒߚዪᚲ᭴ㅧᄌൻߩ⸃ᨆᚻᴺ
’Structon Analysis’ߣ๭߱ࠍ↪޿ߡ⚿᥏෸߮㕖᥏૕ߦਛߢ⿠ߎߞߡ޿ࠆߣផቯߐ
ࠇࠆ᭴ㅧᄌൻߩ⎇ⓥࠍⴕߞߚߩߢߎߎߦႎ๔ߔࠆ‫ޕ‬
32
κΟσ໦ঊ͈‫ס‬ఘ͈́ಿশ‫ۼ‬۱გ!
ᗲ⍮Ꮏᬺᄢቇ ᧛ਛ
ᱜ
stretch, bend, torsion ߩಽሶౝߩౝㇱ᭴ㅧࠍᜬߞߡ޿ࠆ(DREIDING)100 ේሶಽሶߩࡕ࠺࡞ಽሶࠍ⠨߃‫ߩߘޔ‬ಽሶࠍ
3,200 ಽሶ฽ࠎߛࡕ࠺࡞ࠪࠬ࠹ࡓߩಽሶേജቇࠪࡒࡘ࡟࡯࡚ࠪࡦࠍⴕߞߚ‫ޕ‬૕Ⓧ৻ቯߩࠪࡒࡘ࡟࡯࡚ࠪࡦߢ޽ࠅ‫ޔ‬એ೨ߦ
ⴕߞߚ 20 ේሶಽሶߩࡕ࠺࡞ಽሶߣหߓኒᐲ 0.9g/mol ߣߒߚߚ߼‫৻ޔ‬ㄝ߇⚂ 20nm ߩ┙ᣇ૕ߣߥࠆ‫ޕ‬એ೨ߪ⚂ 10nm ߦ
ߡⴕߞߚߚ߼‫ޔ‬8 ୚ߩࠪࠬ࠹ࡓࠨࠗ࠭ߢⴕߞߡ޿ࠆ‫ޔ߼ߚ߁ⴕࠍࡦ࡚ࠪ࡯࡟ࡘࡒࠪߩࠢ࡞ࡃޕ‬๟ᦼႺ⇇᧦ઙࠍ⺖ߒߡ޿ࠆ
ߩߢ‫ޔ‬ಽሶ߇િ߮߈ߞߚ㓙ߦ‫ޔ‬ಽሶߩ৻┵߇ਇ⥄ὼߦઁ┵ࠍേ߆ߒߡߒ߹߁੐ࠍㆱߌࠆߚ߼ߦࠪࠬ࠹ࡓࠨࠗ࠭ࠍᄢ߈ߊߒߚ‫ޕ‬
ೋᦼ㈩⟎߇಴᧪਄߇ߞߡ߆ࠄ‫৻ޔ‬ቯߩ᷷ᐲ 600K ߢ✭๺ࠍᓙߞߡߺࠆߣ‫ޔ‬1,000 ਁ steps
ታᤨ㑆 10ns⒟ᐲߩᤨ㑆ࠍ⚻
ߡ‫ޔ‬ᐔဋ⊛ߦਣ߹ߞߡ޿ߚಽሶ᭴ㅧ߇㐳ߊᑧ߮ߚ᭴ㅧ߳ߣᄌൻߒߚ‫ߩߤ߶ࠇߎޕ‬㐳ᤨ㑆✭๺ߪ 20 ේሶಽሶ 600K ߢߪ⷗
ࠄࠇߥ޿‫ޕ‬㕖⃻ታ⊛ߢߪ޽ࠆ߇‫ޔ‬ኒᐲࠍห৻ߣߒߚߎߣߦࠃࠅ‫ࠆ޿ߡߞߥߦ࡜ࡃ࡜ࡃޔ‬㧡ᧄߩ 20 ේሶಽሶ߇‫ޔ‬1 ᧄߩ
100 ේሶಽሶߦߥߞߚߚ߼‫ޔ‬ⓨ㑆⊛ߦߪ㓗㑆߇ᄙߊߥߞߡ޿ࠆࡂ࠭ߢ޽ࠆ‫߽ߦޕ‬㑐ࠊࠄߕ✭๺߇ㆃߊߥߞߡ޿ࠆ‫ߩߎޕ‬ὐ
ߦߟ޿ߡᓮ⼏⺰㗂ߌࠇ߫‫⋥ޔ‬㎮㜞ಽሶߦࠃࠆࠟ࡜ࠬߩㆃ޿✭๺ߩℂ⸃߇ᷓ߹ࠆߣ⠨߃߹ߔ‫ޕ‬
Molecular-dynamics simulation study on the nature of glassy reorientational dynamics
ಽሶ⑼ቇ⎇ⓥᚲ ㈕ ⺈⯥
ㆊ಄ළᶧ૕ߩ࠳ࠗ࠽ࡒࠢࠬߩ․ᓽߣߒߡ‫ޔ‬2 ߟߩ‫ޟ‬decoupling‫߇ޠ‬⍮ࠄࠇߡ޿ࠆ‫ޕ‬1 ߟߪ
ਗㅴ᜛ᢔଥᢙߣ☼ᕈ₸ߩ
decoupling ߢ޽ࠅ‫ޔ‬breakdown of the Stokes-Einstein relation ߣ߽๭߫ࠇߡ޿ࠆ‫߁߽ޕ‬㧝ߟߪ‫ޟ‬ਗㅴ‫ޠ‬᜛ᢔଥᢙߣ‫ޟ‬࿁
ォ‫ޠ‬᜛ᢔଥᢙߩ decoupling ߢ޽ࠅ‫߫߃଀ޔ‬ઍ⴫⊛ߥࠟ࡜ࠬᒻᚑ‛⾰ߢ޽ࠆ OTP ߦ߅޿ߡ‫ޔ‬ਗㅴ᜛ᢔଥᢙߦ㑐ߒߡߪ
Stokes-Einstein ೣ߇
Tg ࠃࠅ㜞޿޽ࠆ᷷ᐲએਅߢߪ⎕ࠇߡ޿ࠆߩߦኻߒ‫ޔ‬࿁ォ᜛ᢔଥᢙߦ㑐ߒߡߪ Tg ㄭㄝ߹ߢኻᔕߔ
ࠆ㑐ଥᑼ
the Stokes-Einstein-̌Debye̍relation ߣ๭߫ࠇߡ޿ࠆ߇⎕ࠇߡ޿ߥ޿ߎߣ߇ታ㛎⊛ߦ⍮ࠄࠇߡ޿ࠆ‫ࠇߎޕ‬
ࠄߪㆊ಄ළᶧ૕ߩ࠳ࠗ࠽ࡒࠢࠬߦ߅ߌࠆ‫ޟ‬േ⊛ਇဋ৻ᕈ‫ߣޠ‬㑐ㅪߒߡ޿ࠆ੐ᨩߢ޽ࠅ‫⃻ޔ‬࿷ᵴ⊒ߥ⎇ⓥ߇ⴕࠊࠇߡ޿ࠆ
࠹࡯ࡑߢ޽ࠆ‫ޔߪߡ޿߅ߦ⴫⊒ᧄޕ‬ㆊ಄ළ⁁ᘒߦ߅ߌࠆಽሶᕈᶧ૕ߩࠪࡒࡘ࡟࡯࡚ࠪࡦ⚿ᨐߦߟ޿ߡ⺰ߓ‫ޔ‬࿁ォㆇേߦ㑐
ߔࠆ Stokes-Einstein-Debye relation ߪᧄᒰߦ⎕ࠇߡ޿ߥ޿ߩ߆㧫ߣ޿߁໧޿ߦ╵߃ߚ޿ߣ⠨߃ߡ޿ࠆ‫ޔߚ߹ޕ‬࿁ォㆇ
േߩേ⊛ਇဋ৻ᕈߦ⌕⋡ߒߚ⸃ᨆࠍⴕ߁ߎߣߦࠃࠅ‫(ޔ‬i) േ⊛ਇဋ৻ᕈ
✭๺ᤨ㑆ߩಽᏓߩᄢ߈ߐߪߤߩ⒟ᐲߢ‫ߩߘޔ‬᷷
ᐲଐሽᕈߪߤ߁߆㧫(iii)ਗㅴߣ࿁ォㆇേߦ߅ߌࠆേ⊛ਇဋ৻ᕈߩ⋧㑐ߪߤࠇߊࠄ޿޽ࠆߩ߆㧫╬ߩ໧޿ߦ߽╵߃ߚ޿ߣ⠨
߃ߡ޿ࠆ‫ޕ‬
ً႖‫סݕ‬ఘ̤̫ͥͅ൲എ௖‫͈۾‬๷ণഎၑა!
㜞⍮Ꮏ⑼ᄢቇ ✚ว⎇ⓥᚲ‫ ࠬࡦ࡜ࡈ ࡯࡟ࠢࠨޔ‬A‫ࠕࡆࡦࡠࠦޔ‬ᄢቇ ࠕࡔ࡝ࠞ B
ችፒ Ꮊᱜ‫ޔ‬Giulio BiroliA, Jean-Phillipe BouchaudA, David R. ReichmanB
ࠟ࡜ࠬォ⒖ὐㄭறߦ߅ߌࠆࠬࡠ࡯࠳ࠗ࠽ࡒࠢࠬߩ⢛ᓟߦߪ‫ޔ‬േ⊛ਇဋ৻ᕈ߇޽ࠆ‫৻ߪࠇߘޕ‬⒳ߩදห⃻⽎ߢ޽ࠅ‫․ޔ‬ᓽ
⊛ߥ⋧㑐㐳߇ሽ࿷ߔࠆ╫ߢ޽ࠆ‫ޔߒ߆ߒޕ‬േᓘಽᏓ㑐ᢙߩࠃ߁ߥ㕒⊛᭴ㅧࠍ⌑߼ߡ߽‫ޔ‬දห⃻⽎ࠍ␜ໂߔࠆࠃ߁ߥ⇣Ᏹߪ‫ޔ‬
ߤߎߦ߽⷗ࠄࠇߥ޿‫⋧ߩߎޔࠅ߹ߟޕ‬㑐㐳ߪേ⊛ߥ⿠Ḯࠍᜬߟ╫ߢ޽ࠆ‫ޕ‬േ⊛⋧㑐㐳ࠍ᷹ⷰߔࠆߚ߼ߦߪ‫ޔ‬േ⊛ߥᖱႎࠍ
ⓨ㑆ߢᐔဋߒߡߒ߹߁ੑ૕⋧㑐㑐ᢙߢߪߥߊ‫ޔ‬㜞ᰴߩ⋧㑐㑐ᢙࠍ⷗ߥߊߡߪߥࠄߥ޿‫ޔࠍࠇߎޕ‬ታ㛎߿ࠪࡒࡘ࡟࡯࡚ࠪࡦ
ߢ᝝ࠄ߃ࠆߎߣߢ߈ࠆࠃ߁ߦߥߞߚߩߪ‫ޔ‬90 ᐕ߽ᓟඨߦߥߞߡ߆ࠄߩߎߣߢ޽ࠆ‫੹ޔߒ߆ߒޕ‬ᣣߦ೔ࠆ߹ߢ‫⋧ߩߎޔ‬㑐
㐳ࠍ⺑᣿ߔࠆ╙৻ේℂ⊛ߥℂ⺰ߪሽ࿷ߒߥ߆ߞߚ‫ࠬ࡜ࠟޕ‬ォ⒖ߦ߅ߌࠆઍ⴫⊛ߥ╙৻ේℂℂ⺰ߪ‫⚿࠼࡯ࡕޔ‬วℂ⺰
MCTߢ޽ࠆ‫ޕ‬MCT ߪォ⒖ὐࠃࠅ㜞᷷஥ߢߩ‫ޔ‬ੑ૕⋧㑐㑐ᢙߦ⃻ࠇࠆࠬࡠ࡯࠳ࠗ࠽ࡒࠢࠬࠍࠃߊ⺑᣿ߔࠆ߇‫ޔ‬ℂ⺰ߩ
‫ޟ‬ᐔဋ႐‫ߥ⊛ޠ‬ᕈ⾰਄‫⋧ޔ‬㑐㐳ࠍ⺑᣿ߔࠆߎߣߪߢ߈ߥ޿‫ߣޔ‬ᕁࠊࠇߡ߈ߚ‫ߦᧉ⚛ޔߒ߆ߒޕ‬⠨߃ߡߺߡ߽‫ࠗ࠳࡯ࡠࠬޔ‬
࠽ࡒࠢࠬࠍ⸥ㅀߔࠆℂ⺰߇‫ߩࠬࠢࡒ࠽ࠗ࠳࡯ࡠࠬޔ‬ේ࿃ߢ޽ࠆදห⃻⽎ࠍ⺑᣿ߢ߈ߥ޿‫߽ߦ߆޿ߪߩ߁޿ߣޔ‬ਇ⥄ὼߢ޽
ࠆ‫ޕ‬ᚒ‫ޔߪޘ‬MCT ࠍ᜛ᒛߒ‫⋧ޔ‬㑐㐳ࠍ⸘▚ߔࠆߎߣߦᚑഞߒߚ‫ߡߒߘޕ‬ᢙ୯⸃ᨆߦࠃߞߡ‫⋧ޔ‬㑐㐳ߩᚑ㐳ೣ߿‫࠲࡯ࡌޔ‬
㗔ၞ߆ࠄࠕ࡞ࡈࠔ✭๺ᤨ㑆
᭴ㅧ✭๺ᤨ㑆ߦ߆ߌߡߩ‫ᤨߩ࡯ࠫࡠࠜࡈ࡞ࡕߩ߉ࠄំޔ‬㑆ᄌൻࠍቯ㊂⊛ߦ੍ᗐߒߚ‫ࠄࠇߎޕ‬
ߩ⚿ᨐߪ‫ᦨޔ‬ㄭߩᢙ୯⸘▚߇␜ໂߒߡ޿ࠆ⚿⺰ߣ⍦⋫ߒߥ޿‫੹ޕ‬࿁ߩ⻠Ṷߢߪ‫⎇ޔ‬ⓥߩ⢛᥊߽฽߼ߡ‫ᧄޔ‬ℂ⺰ߩᚑᨐߣ໧
㗴ὐߦߟ޿ߡ⼏⺰ߒߚ޿‫ޕ‬
33
අ։୫൲༹ͥ͢ͅ΄ρΑഢ֊͈ၑა!
᧲ᄢ㒮✚วᢥൻ ૒‫ޔ৻⌀ ޘ‬ጤ↰ ⌀ታ
․⇣៨േᴺߣߪ‫ޔ‬ജቇ♽ℂ⺰ߢ⍮ࠄࠇߡ޿ࠆẋㄭ⸃ᨆᴺߩ߭ߣߟߢ޽ࠅ‫ࠅߊߞࠁޔ‬ᄌൻߔࠆ⥄↱ᐲࠍหቯߒ‫ߩߘޔ‬ㆇേ
ࠍ⸥ㅀߔࠆᣇᴺߣߒߡ⍮ࠄࠇߡ޿ࠆ‫ࠬ࡜ࠟޔߪߜߚ⑳ޕ‬ォ⒖ὐㄭߊߢߺࠄࠇࠆᤨ㑆⋧㑐㑐ᢙߩಓ⚿߿േ⊛੐⽎ߩදห⊛ᝄ
ࠆ⥰޿ࠍ․⇣៨േᴺߢ⸃ᨆߒߡ߈ߚ‫ౕޕ‬૕⊛ߦߪ‫◲߽ߣߞ߽ޔߕ߹ޔ‬නߥㄭૃߢᓧࠄࠇࠆᤨ㑆⋧㑐㑐ᢙߩ㐽ߓߚᑼࠍജቇ
♽ߛߣ⠨߃ࠆ‫⋧ޔ‬㑐߇ߥ޿⁁ᘒߦኻߔࠆ✢ᒻ቟ቯᕈ⸃ᨆࠍⴕ޿‫ޔ‬቟ቯᕈߩ㒢⇇ὐࠍ߽ߣ߼‫ࡠ࠯ߢࠅࠊ߹ߩߘޔ‬࿕᦭㑐ᢙߩ
ᝄ᏷ߦኻߔࠆ⊒ዷᣇ⒟ᑼࠍ᳞߼ࠆ‫ޕ‬ᓧࠄࠇߚᝄ᏷ᣇ⒟ᑼߪ‫ᤨޔ‬㑆⋧㑐㑐ᢙߩಓ⚿ߦኻᔕߔࠆࠨ࠼࡞ធ⛯ಽጘࠍ␜ߔߎߣ߇
ࠊ߆ࠆ‫࡞࠼ࠨޔߢ޿ߟޕ‬ធ⛯ಽጘߩ߹ࠊࠅߩំࠄ߉ߩലᨐࠍߺࠆߚ߼ߦ‫〝⚻ޔ‬Ⓧಽ⴫␜ࠍߟߊࠆ‫⸃ߩߘޕ‬ᨆߦ߅޿ߡ߽‫ޔ‬
઒ᗐᤨ㑆ࠍዉ౉ߒߡ‫⇣․ޔ‬៨േᴺߦ߽ߣߠߊ⸘▚ࠍⴕ޿‫ޔ‬േ⊛੐⽎ߩදห⃻⽎⊛ᝄࠆ⥰޿ࠍ․ᓽߠߌࠆᜰᢙࠍౕ૕⊛ߦ⸘
▚ߔࠆ‫ߊోޕ‬ᣂߒ޿ࠕࡊࡠ࡯࠴ߢ޽ࠆߚ߼‫⇣․ޔ‬៨േᴺߩ⠨߃ᣇߣࠟ࡜ࠬ♽߳ߩㆡ↪ߩ઀ᣇߦ㊀ὐࠍ޽ߡߡ⻠Ṷߔࠆ‫ޕ‬
⹦⚦ߪ‫ޔ‬cond-mat/0605049, cond-mat/0609238 ࠍෳᾖ‫ޕ‬
΄ρΑࠏ͈ιΕΑ΋άΛ·̈́ΑΉȜσ͈́๱஌ࠁ؊൞!
ᄢ㒋ᄢቇᄢቇ㒮 ℂቇ⎇ⓥ⑼ ศ㊁ ర
ࠟ࡜ࠬ⁁ᘒߪᐔⴧ⁁ᘒߢߪߥ޿߇‫ᤨߪ♽ߥ⊛ࠬ࡜ࠟޔ‬㑆ߣߣ߽ߦࠃࠅ‫ޟ‬቟ቯ‫⏛߫߃଀ߪࠇߎޕߊࠁߡߞߥߦޠ‬႐߿㔚႐
ߦኻߔࠆ✢ᒻᔕ╵ࠍ᷹ቯߔࠆࠛࠗࠫࡦࠣലᨐߩታ㛎ߢ‫ޔ‬㜞ಽሶࠟ࡜ࠬ‫ߢઁߩߘࠬ࡜ࠣࡦࡇࠬޔ‬᣿ࠄ߆ߦߐࠇߡ߈ߚ‫ޕ‬๟ᵄ
ᢙࠍ࿕ቯߒߚ੤ᵹ✢ᒻᗵฃ₸ߪᤨ㑆ߣߣ߽ߦዊߐߊߥࠅ‫߇♽ޔ‬៨േߦኻߒߡ‫ޟ‬࿕ߊ‫ࠗࠛޕࠆ޿ߡߒ␜ࠍߣߎߊࠁߡߞߥޠ‬
ࠫࡦࠣലᨐ⥄૕ߪ‫ޔ‬ㅢᏱߩ࠼ࡔࠗࡦᚑ㐳ߢ߽⷗ࠄࠇࠆ‫ߚࠇ߰ࠅ޽ߊߏޔ‬㕖ᐔⴧ✭๺⃻⽎ߢ‫ޔ‬ᩰᲑߦࠟ࡜ࠬ♽ߦ࿕᦭ߩ⃻⽎
ߢߪߥ޿‫৻ޕ‬ᣇ‫✢ߪߢ♽ࠬ࡜ࠟޔ‬ᒻᔕ╵ߪ‫ޔ‬㕖Ᏹߦㆃ޿߇‫⇣ޟ‬Ᏹߦᄢ߈޿‫ⷰ
ޠ‬᷹ߐࠇ߿ߔ޿ߣߐࠇ‫ߩߘޔ‬ℂ↱ߦ⥝๧߇
ᜬߚࠇߡ޿ࠆ‫ߚ߹ޕ‬ᄖ႐ߩᒝߐߦᢅᗵߢ‫ޔ‬rejuvenation ߣ๭߫ࠇࠆᄸᅱߥ⃻⽎ࠍ␜ߔ‫‛ߥࡠࠢࡑޕ‬ℂ㊂ߦ⷗ࠄࠇࠆߎ߁
ߒߚ⇣Ᏹߩ⢛ᓟߦ޽ࠆ‫‛ߩߢ࡞࡯ࠤࠬߥࠢ࠶ࡇࠦࠬ࠰ࡔޔ‬ℂߦᒝ޿㑐ᔃ߇ᜬߚࠇߡ޿ࠆ‫߽ߢࠬ࡜ࠣࡦࡇࠬߪߦ⊛⺰⽎⃻ޕ‬
᭴ㅧࠟ࡜ࠬߢߩ޽ࠆ⒳ߩ droplet ឬ௝ߦ߽ߣߠߊࠬࠤ࡯࡝ࡦࠣℂ⺰߇ࡑࠢࡠߥ⃻⽎ࠍ⺑᣿ߔࠆ਄ߢ৻ቯߩᚑഞࠍ෼߼ߡ޿
ࠆ‫ ߽ߘ߽ߘޔߒ߆ߒޕ‬droplet ബ⿠ߩࠃ߁ߥࡔ࠰ࠬࠤ࡯࡞ߢߩ⇣Ᏹߥബ⿠߇ߤ߁ߒߡሽ࿷ߔࠆߩ߆‫߁޿ߣޔ‬ၮᧄ⊛ߥ໧㗴
ߪ⸃߆ࠇߡ޿ߥ޿‫⻠ߩߎޕ‬Ṷߢߪࡔ࠰ࠬࠦࡇ࠶ࠢߥࠬࠤ࡯࡞ߦߺࠄࠇࠆࠟ࡜ࠬ♽․᦭ߩ㕖✢ᒻᔕ╵ߦߟ޿ߡ⼏⺰ߔࠆ‫߹ޕ‬
ߕᦨㄭᚒ‫ޔߚߞⴕ߇ޘ‬1Ბ㓏ߩ࡟ࡊ࡝ࠞኻ⒓ᕈߩ⎕ࠇࠍ␜ߔ‫ޔ‬᭴ㅧࠟ࡜ࠬ‫ߩࠬ࡜ࠣࡦࡇࠬޔ‬ᐔဋ႐ᮨဳ
p૕⋧੕૞↪ߩࠬ
ࡇࡦᮨဳߩ᦭㒢ࠨࠗ࠭ߦ߅ߌࠆ߅ߌࠆ㕖✢ᒻᔕ╵ߩ⸃ࠍ⼏⺰ߔࠆ‫ޕ‬ᰴߦታⓨ㑆➅ࠅㄟߺ⟲ߩ⸃ᨆߦၮߠߊ‫࡞࡯ࠤࠬ࠰ࡔޔ‬
ߢߩ㕖✢ᒻᔕ╵ߩ⸃ᨆࠍⴕߞߚ⚿ᨐࠍ⼏⺰ߔࠆ‫ޕ‬೨⠪ߪή㒢ᄢᰴర‫ޔ‬ᓟ⠪ߪ1ᰴర߆ࠄߩࠕࡊࡠ࡯࠴ߢኻᭂ⊛ߢ޽ࠆ߇‫ޔ‬
ߣ߽ߦࡔ࠰ࠬࠤ࡯࡞ߢߩ⇣Ᏹߥ㕖✢ᒻᔕ╵ࠍ੍⸒ߔࠆ‫ޕ‬㑐ㅪߔࠆታ㛎ߣߒߡ‫࡞ࡊࡦࠨߩࠬ࡜ࠣࡦࡇࠬߥࠢ࠶ࡇࠦࠬ࠰ࡔޔ‬
ߦ߅ߌࠆ㔚᳇ᛶ᛫ࡁ᷹ࠗ࠭ቯߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬
ᧄ⎇ⓥߪ Tommaso Rizzo ᳁
Inst. Enrico Fermi, Romeߣߩ౒ห⎇ⓥߢ޽ࠆ‫ޕ‬
ΑάϋΈρΑ͂΃ͼρςΞͻ!
㒋ᄢℂ Ꮉ᧛ శ
ࠬࡇࡦࠣ࡜ࠬߪ࡜ࡦ࠳ࡓࡀࠬߣࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦߢ․ᓽઃߌࠄࠇࠆ⏛ᕈ૕ߢ޽ࠅ‫ߩߘޔ‬⒎ᐨൻߪࠦࡦࡊ࡟࠶ࠢࠬ♽ߩ
ౖဳ଀ߣߒߡ㐳ߊᵴ⊒ߥ⎇ⓥ߇ዷ㐿ߐࠇߡ߈ߚ‫ࠖ࠹࡝࡜ࠗࠞޟߩࠬ࡜ࠣࡦࡇࠬޕ‬઒⺑‫⏛ࠬ࡜ࠣࡦࡇࠬޔߪޠ‬ᕈ૕ߩ⒎ᐨൻ
ߦ߅޿ߡ‫ߣࠖ࠹࡝࡜ࠗࠞޔ‬๭߫ࠇࠆࠬࡇࡦ᭴ㅧߩฝ࡮Ꮐࠍ⴫ߔ‛ℂ㊂߇㓝ߐࠇߚ⒎ᐨᄌᢙߣߒߡᧄ⾰⊛ߦ㊀ⷐߥᓎഀࠍᨐ
ߚߒߡ޿ࠆߣߔࠆឬ௝ߢ޽ࠆ‫⻠ޕ‬Ṷߢߪ‫ࠬ࡜ࠣࡦࡇࠬޔ‬ォ⒖ߩࠞࠗ࡜࡝࠹ࠖ઒⺑‫߮ࠃ߅ޔ‬㑐ㅪߔࠆታ㛎࠺࡯࠲ߦߟ޿ߡ⺑
᣿ߒ‫ߩߘޔ‬ᒰุࠍᎼࠆᦨㄭߩ⺰੎ߦߟ޿ߡ߽◲නߦ⚫੺ߒߚ޿‫ޕ‬
34
ρϋΘθঽા˴˵κΟσ̤̫ͥͅΈρΑഎ̈́๱໹࣑۱გ͈΍ͼΒΑΉȜςϋΈ!
ർᄢ㒮Ꮏ‫ޔ‬ർᄢ㒮ℂ A‫ޔ‬㒋ᄢ㒮ℂ B ⢻Ꮉ ⍮ᤘ‫ޔ‬ᩮᧄ ᐘఽ A‫ޔ‬ศ㊁ ర B
⿥વዉ⏛᧤ᩰሶ߿㔚⩄ኒᐲᵄ♽ߦ߅޿ߡߪ‫ޔ‬ਇ⚐‛߿ᩰሶᰳ㒱߇߽ߚࠄߔੂࠇߦࠃߞߡ⚐☴♽ߩᜬߟ๟ᦼ⒎ᐨ߇⎕უߐ
ࠇࠆߎߣ߇޽ࠆ‫߇ࠇੂޕ‬චಽᒙ޿႐วߦరߩ⒎ᐨࠍ࿁ᓳߔࠆ߆ุ߆ߣ޿߁໧㗴ߪ㐳ߊ⼏⺰ߐࠇ⛯ߌߡ߈ߚ‫ޕ‬ᒢᕈ⺰ߦၮߠ
ߊ⸃ᨆ⊛ߥ⎇ⓥߦࠃߞߡ‫ޔ‬3 ᰴర♽ߢߪ Bragg glass ߣ๭߫ࠇࠆḰ㐳〒㔌⒎ᐨ⋧߇᦭㒢ߩੂࠇߢ߽ሽ࿷ߔࠆߎߣ߇␜ໂߐ
ࠇߡ޿ࠆ߇‫ߡߞࠃߦࠇੂޔ‬㚟േߐࠇࠆォ⒖ߩᕈ⾰ߪ߶ߣࠎߤℂ⸃ߐࠇߡ޿ߥ޿‫ޕ‬
ᚒ‫ߩߎߪޘ‬ォ⒖ࠍ⺞ߴࠆߚ߼‫⏛ࡓ࠳ࡦ࡜ޔ‬႐ XY ࡕ࠺࡞ߦၮߠߊᢙ୯ࠪࡒࡘ࡟࡯࡚ࠪࡦߢ㕖ᐔⴧ✭๺ࠍ⸃ᨆߒߚ‫ߩߎޕ‬
♽ߪߴ߈߿ᜰᢙ㑐ᢙߢߪ⴫ߖߥ޿‫ޔ‬㕖Ᏹߦㆃ޿ࠣ࡜ࠬ⊛ߥ✭๺ࠍ␜ߔߚ߼‫✭⇇⥃ߥ⊛߈ߴޔ‬๺ࠍ߽ߣߦߒߚ⋧ォ⒖ߩᤨ㑆
ࠬࠤ࡯࡝ࡦࠣ⸃ᨆ߇ᚑࠅ┙ߚߥ޿‫ߢߎߘޕ‬ᚒ‫ߪޘ‬ฦᤨೞߩ⋧㑐㑐ᢙ߆ࠄ․ᕈ㐳ߩᤨ㑆⊒ዷࠍ⸘▚ߒ‫ᤨޔ‬㑆ߩ߆ࠊࠅߦ․ᕈ
㐳ࠍࡄ࡜ࡔ࡯࠲ߣߒߚࠬࠤ࡯࡝ࡦࠣࠍ⠨᩺ߒ‫⸃߇⽎⃻⇇⥃ߡߞࠃߦࠇߎޔ‬ᨆߢ߈ࠆߎߣࠍታ㓙ߦ␜ߒߚ‫ޔߣࠆࠃߦࠇߘޕ‬
ࠪࡒࡘ࡟࡯࡚ࠪࡦࠍⴕߞߚ⏛႐ߩ▸࿐ౝߢ⥃⇇․⇣ᕈߪ⷗ࠄࠇߕ‫⏛ࡠ࠯ࠈߒ߻ޔ‬႐߇⥃⇇ὐߢ޽ࠆߎߣࠍ␜ໂߔࠆ⚿ᨐࠍ
ᓧߚ‫⏛ࡓ࠳ࡦ࡜ߪߣߎߩߎޕ‬႐ࠍᒙߊߒߚߣ߈ߩࠦࡅ࡯࡟ࡦࠬ㐳ߩᚑ㐳ߪᓥ᧪⠨߃ࠄࠇߡ޿ߚࠃࠅ߽ߕߞߣㆃ޿ߎߣࠍᗧ
๧ߒߡ޿ࠆ‫ޕ‬
Ώς΃Ίσळࢢಎͅ໾̲ࣺ̹͛କ͈΄ρΑഢ֊‫ݷ‬൲!
᧲Ꮏᄢ㒮ℂᎿ ዊ࿡ ᱜ᥍
ࡃ࡞ࠢ᳓ߪኈᤃߦ⚿᥏ൻߒߡ᳖ߦߥࠆߚ߼ߦ‫ࠬ࡜ࠟߩߘޔ‬ォ⒖ߪߤߎߢ⿠ߎࠆ߆ߐ߃ᧂ᳿ቯߢ޽ࠅ‫੹ޔ‬ᣣ߽ᾲ޿⼏⺰ࠍ
๭ࠎߢ޿ࠆ‫ ߪߦ⊛ဳౖޕ‬135K ߣ 160K ઃㄭߩ 2 ߟߩน⢻ᕈ߇ᜰ៰ߐࠇߡ޿ࠆ‫⎇ᧄޕ‬ⓥߢߪ‫⚦࡞ࠥࠞ࡝ࠪޔ‬ሹౝߦ㐽ߓㄟ
߼ߚ⚐᳓߅ࠃ߮ࠛ࠴࡟ࡦࠣ࡝ࠦ࡯࡞᳓ṁᶧߩࠟ࡜ࠬォ⒖᜼േࠍᢿᾲᴺᾲ᷹ቯߦࠃࠅ⺞ߴߚ‫ߪ࡞ࠥࠞ࡝ࠪޕ‬ๆḨᕈ߇㕖Ᏹߦ
ᒝߊ‫ޔ‬᳓ಽሶߣࠪ࡜ࡁ࡯࡞ၮߪ㕖Ᏹߦᒝ޿⚿วࠍᒻᚑߔࠆ߽ߩߣℂ⸃ߐࠇൎߜߢ޽ࠆ‫ᧄޔߒ߆ߒޕ‬᷹ቯߩ⚿ᨐ‫ޔ‬᳓ߪ⚦ሹ
ਛᔃㇱߢ᳓ߦ․ᓽ⊛ߥ᳓⚛⚿วࡀ࠶࠻ࡢ࡯ࠢࠍᒻᚑߒ‫⇇ޔ‬㕙ߩ᳓ಽሶߪ࡜ࡦ࠳ࡓߥ㈩⟎⁁ᘒߦ޽ࠆߎߣ߇␜ߐࠇߚ‫⇇ޕ‬㕙
᳓ߪ⚦ሹᓘߦଐሽߒߡ 110㨪130K ߢ‫ޔ‬ౝㇱ᳓ߪ 160K ઃㄭߢࠟ࡜ࠬォ⒖ߔࠆߎߣ߇␜ໂߐࠇߚ‫࡞࡯ࠦ࡝ࠣࡦ࡟࠴ࠛޕ‬᳓
ṁᶧߢߪ‫ޔ‬᳓ಽሶߪਛᔃㇱߦ㓸߹ߞߡ᳓⚛⚿วࡀ࠶࠻ࡢ࡯ࠢࠍᒻᚑߒ‫⇇ߪ࡞࡯ࠦ࡝ࠣࡦ࡟࠴ࠛޔ‬㕙ߦ᛼ߒ߿ࠄࠇᤃ޿ߎߣ
߇ផ⺰ߐࠇࠆ‫ޕ‬
ρασ̱̹εςΑΙτϋถ྄͈΄ρΑഢ֊͂Θͼ΢η·Α!
੩Ꮏ❫ᄢ‫ޔ‬Northwestern Univ.A ᷓየ ᶈᰴ‫ޔ‬R. D. PriestleyA
DR1 ߣ޿߁⦡⚛ߢ࡜ࡌ࡞ߒߚࡐ࡝ࠬ࠴࡟ࡦ
PS⭯⤑ߩࠟ࡜ࠬォ⒖᷷ᐲߣ࠳ࠗ࠽ࠗࡒࠢࠬࠍ⺃㔚✭๺᷹ቯߦࠃࠅ⺞ߴߚ‫ޕ‬
ߎߩ♽ߢߪ DR1 ߩ࿁ォㆇേ߇᷹ⷰߐࠇࠆ߇‫ࠬ࡜ࠟޔ‬ォ⒖᷷ᐲએ਄ߢߪߎߩㆇേ߇㜞ಽሶ㎮ߩ࠮ࠣࡔࡦ࠻ㆇേ
αㆊ⒟ߣ
ᒝߊࠞ࠶ࡊ࡞ߒߡ޿ࠆߚ߼‫ޔ‬ㅢᏱߩࡐ࡝ࠬ࠴࡟ࡦߩ 65 ୚⒟ᐲߩ✭๺ᒝᐲࠍᜬߞߚαㆊ⒟߇᷹ⷰߐࠇࠆ‫ ߩߎޕ‬DR1 ߢ࡜ࡌ
࡞ߒߚࡐ࡝ࠬ࠴࡟ࡦ
PS-DR1ߦኻߒߡ‫ޔߕ߹ޔ‬නጀߩ⭯⤑ࠍ૞⵾ߒ‫ޔ‬⒳‫⤑ߩޘ‬ෘߦኻߔࠆࠟ࡜ࠬォ⒖᷷ᐲ‫߮ࠃ߅ޔ‬αㆊ
⒟ߩ࠳ࠗ࠽ࡒࠢࠬࠍ⺃㔚✭๺ࠬࡍࠢ࠻ࡠࠬࠦࡇ࡯ᴺߦࠃࠅ⺞ߴߚ‫ޕ‬ᰴߦ‫ޔ‬10nm ⒟ᐲߩ⤑ෘߩ PS-DR1 ߩጀߣ 300nm ⒟
ᐲߩචಽߦෘ޿⤑ෘߩ࡜ࡌ࡞ߒߡ޿ߥ޿ PS ጀ߆ࠄᚑࠆ 2 ጀ⤑ࠍ૞⵾ߒ‫ߩߘޔ‬αㆊ⒟ߩ࠳ࠗ࠽ࡒࠢࠬࠍห᭽ߦ᷹ቯߒߚ‫ޕ‬
ߎࠇߦࠃࠅ‫ߚߒ࡞ࡌ࡜ޔ‬ጀߩߺ߆ࠄߩࠪࠣ࠽࡞ࠍขࠅ಴ߔߎߣ߇น⢻ߢ޽ࠆ‫ߚߒ࡞ࡌ࡜ޕ‬ጀࠍ⥄↱⴫㕙‫ߪߚ߹ޔ‬ၮ᧼ߣ࡜
ࡌ࡞ߒߡ޿ߥ޿ PS ߩࡃ࡞ࠢߥጀߣߩ⇇㕙ߦᝌ౉ߒߚ႐วߣ‫ ߚߒ࡞ࡌ࡜ޔ‬PS ߩනጀߩ⭯⤑ߢߩ࠳ࠗ࠽ࡒࠢࠬߣࠍᲧセߒ
ߚ‫⚿ߩߘޕ‬ᨐ‫⴫↱⥄ޔ‬㕙߹ߚߪၮ᧼ߣߩ⇇㕙ߩ޿ߕࠇߩ႐ว߽‫ޔ‬αㆊ⒟ߩ✭๺ᤨ㑆ߪᐔဋߣߒߡߪࡃ࡞ࠢߩ႐วߣหߓߢ
޽ࠆ߇‫✭ߩߘޔ‬๺ᤨ㑆ߩಽᏓߪࡉࡠ࡯࠼ߦߥߞߡ޿ࠆߎߣ߇ࠊ߆ߞߚ‫ߦࠇߎޕ‬ኻߒߡ‫ ߚߒ࡞ࡌ࡜ޔ‬PS ߩනጀߩ⭯⤑ߢߪ
αㆊ⒟ߩᐔဋ✭๺ᤨ㑆ߩૐਅߣߘߩ✭๺ᤨ㑆ಽᏓߩࡉࡠ࡯࠼࠾ࡦࠣ߇߅ߎߞߡ޿ࠆ‫ޕ‬ᒰᣣߪߎࠇࠄߩ⚿ᨐߦߟ޿ߡႎ๔ߔ
ࠆ੍ቯߢ޽ࠆ‫ޕ‬
35
໦ঊ൲ႁ‫ڠ‬ΏηντȜΏοϋͥ͢ͅ΄ρΑഢ֊߃ཌྷ͈‫ފ‬൳ठ෻౾ႀ֖͈ࣉख़!
਻ᄢℂ ᧻੗ ᷕ
ࠟ࡜ࠬォ⒖ߪ⒎ᐨൻࠍ઻ࠊߥ޿ߩߢ‫ ”ߥ☴⚐”ޔ‬࿕ൻߣ޿߃ࠆ‫ޕ‬࿕ൻߩㆊ⒟ߢ‫ޔ‬᭴ㅧࠛࡦ࠻ࡠࡇ࡯߇᷷ᐲ㒠ਅߣߣ߽ߦ
ㅪ⛯⊛ߦᷫዋߒߡࠁߊߩ߇․ᓽߢ޽ࠆ‫ޕ‬Adam-Gibbs ߦࠃߞߡ‫ޔ‬ㆊ಄ළᶧ૕ਛߩಽሶߩ᭴ㅧ✭๺ߦ߅ߌࠆද⺞ᕈߣ᭴ㅧࠛ
ࡦ࠻ࡠࡇ࡯ࠍ㑐ㅪߠߌࠆ᭎ᔨ߇ឭ໒ߐࠇߚ‫ޕ‬᭎ߨฃߌ౉ࠇࠄࠇߡ޿ࠆ߽ߩߩ‫ޔ‬දหౣ㈩⟎㗔ၞ
CRRࠍታ㓙ߦ᷹ⷰߒߚ
ႎ๔ߪߥ޿‫ޕ‬᭴ㅧ✭๺߇⿠ߎࠆߚ߼ߦᔅⷐߥࠨࠗ࠭߇ォ⒖ὐߦㄭߠߊߦߟࠇߡჇᄢߔࠆߩ߆ࠍ‫
ޔ‬1᜔᧤♽ߩಽሶേജቇ
ࠪࡒࡘ࡟࡯࡚ࠪࡦ‫
ޔ‬2േ⊛᭴ㅧ࿃ሶߩ⸘▚⚿ᨐ‫
ޔ‬3☸ሶߩࠫࡖࡦࡊ᜛ᢔߩᓙߜᤨ㑆ಽᏓߩ⚿ᨐ߆ࠄ⠨ኤߒߚ޿‫ޕ‬
ͺ·Πη΂Ώϋ໦ঊκȜΗȜ͈΀ΥσΆȜ౷ࠁ͂൲ै‫!ࢹܥ‬
ᣧᄢℂᎿ 㜞㊁ శೣ
ࠕࠢ࠻ࡒࠝࠪࡦߪઍ⴫⊛ߥⰮ⊕⾰ಽሶࡕ࡯࠲࡯ߢ޽ࠅ‫ޔ‬1 ಽሶ⸘᷹ߦࠃߞߡ‫ࡦࠪࠝࡒޔ‬ಽሶ߇ᣇะᕈࠍᜬߞߚࡉ࡜࠙ࡦ
ㆇേ⊛ߦࠕࠢ࠴ࡦࡈࠖ࡜ࡔࡦ࠻਄ࠍ⒖േߔࠆߎߣ߇␜ߐࠇߚ‫ޕ‬⒖േߪࠬ࠹࠶ࡊ⁁ߢ޽ࠅ‫ࡊ࠶࠹ࠬޔ‬᏷ߪࠕࠢ࠴ࡦࡕࡁࡑ࡯
ߩࠨࠗ࠭ߦ╬ߒߊ‫ޔ‬1 ࿁ߩ ATP ട᳓ಽ⸃ߢ↢ߓࠆࠬ࠹࠶ࡊᢙ
ᦨᄢ 5 ࠬ࠹࠶ࡊߪ⏕₸ಽᏓߔࠆߎߣ߇ಽ߆ߞߚ‫⎇ᧄޕ‬ⓥ
ߢߪ‫ޔ‬ಽሶേജቇ⸘▚ߦࠃߞߡࠕࠢ࠻ࡒࠝࠪࡦߩ᜼േࠍⷰኤߒ‫ޔ‬㧝ಽሶ⸘᷹ߢ␜ߐࠇߚಽሶࡕ࡯࠲࡯ߩ․ᓽࠍ⺞ߴߡߺࠆ‫ޕ‬
ࡒࠝࠪࡦߣࠕࠢ࠴ࡦࡈࠖ࡜ࡔࡦ࠻ߣߩ㑆ߩಽሶ㑆⋧੕૞↪ࠛࡀ࡞ࠡ࡯࿾ᒻߦࠕࠢ࠻ࡒࠝࠪࡦಽሶࡕ࡯࠲࡯ߩേ૞ᯏ᭴ࠍ⸃
ߊ㎛߇޽ࠆߎߣࠍ␜ߔ‫৻ޕ‬ᣇ‫ࡦࠪࠝࡒޔ‬ಽሶߩ⒖േߪ ATP ߩട᳓ಽ⸃߇⚳ੌᓟߒ߫ࠄߊߚߞߡ߆ࠄ
ࡒ࡝⑽ࠝ࡯࠳࡯↢
ߓࠆߎߣ߇㧝ಽሶ⸘᷹ߢ␜ߐࠇߡ߅ࠅ‫ޔ‬ട᳓ಽ⸃ࠛࡀ࡞ࠡ࡯߇৻ᤨ⊛ߦಽሶౝㇱߦ⫾߃ࠄࠇߡ޿ࠆน⢻ᕈ߇⼏⺰ߐࠇߡ߈
ߚ‫⎇ᧄޕ‬ⓥߢߪ‫ࡦࠪࠝࡒޔ‬ಽሶౝߩኒᐲ⋧㑐㑐ᢙߣኒᐲᔕ╵㑐ᢙߩ㑐ଥ
ំേᔕ╵㑐ଥࠍ⺞ߴ‫ࠄ߆ߎߘޔ‬᳞߹ࠆ‫᦭ޟ‬ല᷷
ᐲ‫ߪߢ♽࠴ࡦࠛࠢ߇ޠ‬ⅣႺߩ᷷ᐲࠃࠅ߽㜞ߊߥࠆߎߣࠍ␜ߔ‫ޕ‬ಽሶౝߢߩࠛࡀ࡞ࠡ࡯⾂⬿ᯏ᭴߇ࡒࠝࠪࡦߩࠟ࡜ࠬ⊛ᕈ⾰
߆ࠄℂ⸃ߐࠇ߁ࠆߎߣࠍ⼏⺰ߔࠆ‫ޕ‬
‫ޑ‬௖‫;΃۾‬ϋΗȜͼ΂ϋࠏ͈໹޳ા༷೾৆ȇ௖‫۾‬ાͺίυȜΙ!
㜞⍮Ꮏ⑼ᄢ ฎᴛ ᶈ
ࠞ࠙ࡦ࠲࡯ࠗࠝࡦ
㜞ಽሶ㔚⸃⾰߆ࠄ⸃㔌ߒߚ෻ኻ╓ภࠗࠝࡦߪ‫ޔ‬㜞ಽሶ㔚⸃⾰ߦ㕒㔚⊛ߦᒁ߈ነߖࠄࠇࠆߚ߼ⓨ㑆⊛
ߦਇဋ৻ߥಽᏓࠍߔࠆ‫ࡦࠝࠗ࡯࠲ࡦ࠙ࠞߩߎޕ‬ಽᏓߦߟ޿ߡ‫ޟޔ‬Poisson-Boltzmann
PBᣇ⒟ᑼߪ‫ޔ‬ଔᢙ߇ 2 એ਄ߢߪ
᦭ലߢߥ޿‫߇⺰⚿߁޿ߣޠޕ‬㐳ࠄߊᡰᜬߐࠇߡ߈ߚ‫ޕ‬
․ߦ‫ߩࡦࠝࠗ࡯࠲ࡦ࠙ࠞޔ‬ଔᢙ߇ᄢ߈ߊ㜞ಽሶ㔚⸃⾰ߩ㔚⩄ኒᐲ߇㜞޿ᒝ⋧㑐♽ߢߪ‫ޔ‬PB ㄭૃߪ╙ 1 ㄭૃߣߒߡߔࠄ
೑↪ߢ߈ߥ޿ߣ޿߁⷗⸃߇ឭ಴ߐࠇߡ‫ޔ‬ᢙᐕ߇⚻ㆊߒߚ[1]‫ ߩߎޔ߇ࠈߎߣޕ‬2‫ޔ‬3 ᐕߩ㑆ߦߥߐࠇߚ৻ㅪߩ⸘▚ߪ‫ޔ‬਄ㅀ
ߩ౒᦭⹺⼂ߦ෻ߒߡ‫ޔ‬ㄭ〒㔌⋧㑐ࠍㆡಾߦ➅ࠅㄟ߼߫‫ޔ‬PB ⊛ߥขࠅᛒ޿ߦࠃࠅ⸘▚ᯏታ㛎ߩ⚿ᨐࠍࠃߊౣ⃻ߢ߈ࠆߎߣ
ࠍ␜ߒߡ޿ࠆ[2]‫⻠ᧄߢߎߘޕ‬Ṷߢߪ‫ޔ‬એਅߩ໧޿ߦ╵߃ࠆℂ⺰ࠍឭ಴ߒ‫ޔ‬Weeks ࠄߩឭ໒ߔࠆᒝ⋧㑐ᣇ⒟ᑼ[2]ࠍᐔဋ႐
ㄭૃߩਅߢዉ಴ߔࠆ‫ޕ‬
໧޿㧝㧦ߥߗ‫ޔ‬ᒝ⋧㑐ၞߢᐔဋ႐ㄭૃ߇ᚑ┙ߔࠆߩ߆㧫
໧޿㧞㧦૗ࠍታല⊛ߥ⋧੕૞↪ࡐ࠹ࡦࠪࡖ࡞ߣߒߡ૶↪ߔߴ߈߆㧫
ߎࠇ߹ߢᒝ⋧㑐ߩቯ⟵ߔࠄ‫⻠ޔ‬Ṷ⠪߽฽߼ߡᱜߒߊⴕߞߡ޿ߥ߆ߞߚ[1, 2, 3]‫ߩߘޔߕ߹ޕ‬ὐ߆ࠄୃᱜߔࠆ‫ޔߦࠄߐޕ‬
ታലࡐ࠹ࡦࠪࡖ࡞ߩ໧㗴ߦ╵߃ࠆߚ߼ߦ‫ޔ‬ᣂߚߦ⋧㑐႐ℂ⺰ࠍ᭴▽ߒ‫ޔ‬໧޿㧞ߦ╵߃ࠆߎߣߦᚑഞߒߚ‫․ޔߪߢ⴫⊒ᧄޕ‬
ߦᓟ⠪ߩ੐㗄ߦᤨ㑆ࠍഀ޿ߡ⺑᣿ߔࠆ‫ޕ‬
[1] R. R. Netz, EPJE vol. 5, 557 (2001)
[2] Y. G. Chen and J. D. Weeks, PNAS vol. 103, 7560 (2006); C. D. Santangelo, PRE vol. 73, 041512 (2006); Y. Burak,
D. Andelman, and H. Orland, PRE vol. 70, 016102 (2004).
[3] H. Frusawa, JPSJ vol. 73, 507 (2004).
36
ͼ΂ϋഥ൵଻΄ρᾼ̤̫ͥͼ΂ϋΘͼ΢η·Α͈൲എະ޳֚଻!
᧲Ꮏᄢ A‫ޔ‬Naval Research LabB Ꮠፒ Ảሶ A‫ޔ‬K.L. NgaiB
ࠗࠝࡦવዉᕈࠟ࡜ࠬߦ߅޿ߡߪ‫ޔ‬ㅦ޿ࠗࠝࡦߣㆃ޿ࠗࠝࡦ߇౒ሽߒߚⶄ㔀ߥ࠳ࠗ࠽ࡒࠢࠬ߇⷗ࠄࠇࠆ‫ߩߎޕ‬േ⊛ߦਇဋ
৻ߥ᜼േߪಽሶᕈߩࠟ࡜ࠬᒻᚑ‛⾰‫ߤߥ♽࠼ࠗࡠࠦޔ‬ᄙߊߩ♽ߣ౒ㅢὐࠍᜬߟ‫㉄ࠗࠤ࡝ࠞ࡞ࠕޕ‬Ⴎ
Li2SiO3ߦ߅ߌࠆࠗ
ࠝࡦߩㆇേࠍಽሶേജቇࠪࡒࡘ࡟࡯࡚ࠪࡦ
MDࠍ↪޿ߡ․ᓽઃߌߚ‫ߩࡦࠝࠗࠆߌ߅ߦࠬ࡜ࠟޕ‬᜛ᢔߦߪ‫ᤨޔ‬ⓨ⋧㑐㑐ᢙ
ߩ⥄Ꮖㇱಽߦ⷗ࠄࠇࠆ㐳〒㔌ߩ࠹ࠗ࡞ㇱಽ߇ਥߦነਈߒ‫ߩࡦࠝࠗߪߦࠇߎޔ‬ද⺞ㆇേ߇㑐ࠊߞߡ޿ࠆ‫ߟߦ〔゠ߩࡦࠝࠗޕ‬
޿ߡߩ࡜ࡦ࠳ࡓ࠙ࠜ࡯ࠢߩࡈ࡜ࠢ࠲࡞ᰴర⸃ᨆ߆ࠄߪ‫ޔ‬ᐔဋੑਸ਼ᄌ૏ߦߺࠄࠇࠆߴ߈⊛ߥ᜼േ߇‫ߩࡊࡦࡖࠫޔ‬ᓟᚯࠅㆇേ
ߦࠃࠆߎߣ߇ࠊ߆ࠆ‫ޕ‬
ࠗࠝࡦߩ⸰ࠇߚ૏⟎ࠍⓍ▚ߒߡᓧߚኒᐲಽᏓߦ⷗ࠄࠇࠆേ⊛ਇဋ৻᭴ㅧߪ‫ޔ‬
Ⲣ૕‫ߩࠬ࡜ࠟޔ‬ਔᣇߦ߅޿ߡ‫࡞࠲ࠢ࡜ࡈ࠴࡞ࡑޔ‬ᕈࠍ␜ߔ‫ޔߪߢޕ‬୘‫ࠗߩޘ‬
ࠝࡦߪߤߩࠃ߁ߦㆇേߔࠆߩߛࠈ߁߆㧫
࿑㧝ߦ‫ޔ‬700K ߩࠟ࡜ࠬਛߩ৻୘ߩ Li ࠗࠝࡦߩᄌ૏ߩ⛘ኻ୯ߩᤨ♽೉߆ࠄ
ᓧߚㆇേߩ૏⋧࿑
ᄌ૏ߩᓸಽߩᄌ૏ߦኻߔࠆࡊࡠ࠶࠻ࠍ␜ߔ‫ߥ߁ࠃߩߎޕ‬
ࡊࡠ࠶࠻ߢߪ‫ߥࡓ࠳ࡦ࡜ޔ‬ㆇേߪⓨ㑆ࠍၒ߼ዧߊߒ‫ޔ‬ᝄേ⊛ߥㆇേߪᬦ౞ߦ
ߥࠆ‫ޕ‬ਥᚑಽ⸃ᨆߦࠃࠅᾲࡁࠗ࠭ࠍ㒰෰ߔࠆߎߣߢ‫ࡊࡦࡖࠫޔ‬ㆇേ‫ޔ‬ዪ࿷ൻ
ㆇേߥߤߩ᳿ቯ⺰⊛ߥ㕙߇᣿⏕ߦߥߞߚ‫ޕ‬
ρϋΘθͅ෻౾̯̹ͦάϋগ͛ঽાಎ͈ঽ༃‫׋‬൲!
‛⾰᧚ᢱ⎇ⓥᯏ᭴ ᧻ਅ ൎ⟵
࡜ࡦ࠳ࡓߥࡇࡦᱛ߼ࡐ࠹ࡦࠪࡖ࡞ߩሽ࿷ߔࠆᇦ⾰ਛߩᒢᕈ૕
ᒢᕈ⤑‫ߩߤߥ࡯ࡑ࡝ࡐޔ‬ㆇേߪฎߊ߆ࠄࠃߊ⎇ⓥߐࠇߡ
޿ࠆ‫⏛ޕ‬ოߩㆇേ߽ߘߩࠃ߁ߥㆇേߩ৻⒳ߣ⠨߃ࠄࠇߡ޿ࠆ߇‫ᧄޔ‬ᒰߦᒢᕈ૕ࡕ࠺࡞ߢ⸥ㅀߐࠇࠆ♽߆ߤ߁߆ Ising ࡕ
࠺࡞ߢߩࡕࡦ࠹ࠞ࡞ࡠࠪࡒࡘ࡟࡯࡚ࠪࡦߦࠃࠅ⺞ߴࠄࠇߚએᄖߪ߶ߣࠎߤ⍮ࠄࠇߡ޿ߥ޿‫⎇ᧄޕ‬ⓥߦ߅޿ߡᚒ‫ߪޘ‬
Heizenberg ࡕ࠺࡞ߦ⇣ᣇᕈߦࠃࠅ⏛ოߩㆇേࠍࡕࡦ࠹ࠞ࡞ࡠࠪࡒࡘ࡟࡯࡚ࠪࡦ෸߮ಽሶേജቇࠪࡒࡘ࡟࡯࡚ࠪࡦࠍ↪޿
ߡ⺞ߴߚ‫⚿ߩߘޕ‬ᨐߦߟ޿ߡᧄ⻠Ṷߢႎ๔ߔࠆ‫ޕ‬
΋υͼΡ໦८ࠏ̤̫ͥͅ)ഩ‫*ܨ‬ၠఘႁ‫࡛ڠ‬ય͈ΏηντȜΏοϋ!
ಽሶ⎇‫਻ޔ‬ᄢᎿ A‫ޔ‬੩ᄢᎿ B ㊄ ㍑‫ޔ‬ฬཅጊ ␽਽ A‫ޔ‬ጊᧄ ㊂৻ B
ࠦࡠࠗ࠼ಽᢔ♽ߩ࡟ࠝࡠࠫ࡯߿⩄㔚ࠦࡠࠗ࠼☸ሶߩ㔚᳇ᵒേߥߤߩ㔚᳇ᵹ૕ജቇ⃻⽎ࠍᵹ૕ߩ Navier-Stokes ᣇ⒟ᑼ
߿㕒㔚ജቇߩ Poisson ᣇ⒟ᑼߥߤߩၮᧄᣇ⒟ᑼࠍᭂജㄭૃࠍዉ౉ߒߥ޿ߢ⸘▚ߔࠆߚ߼ߩࠪࡒࡘ࡟࡯࡚ࠪࡦࠍ㐿⊒ߒߚ‫ޕ‬
ㆡ↪଀ߣߒߡ‫ࠕࠪޔ‬ᵹਅߩ Ộᶧߩᵹേߣ㔚᳇ᵒേ⃻⽎ߩ࠺ࡕࡦࠬ࠻࡟࡯࡚ࠪࡦࠍ⚫੺ߒߚ޿‫ޕ‬
37
bouncing ball orbits ͈̜ͥΫςμȜΡࠏ͈ठ‫ܦ‬শ‫ۼ‬໦ື!
㚂ㇺᄢℂᎿ‫┙ޔ‬๮㙚ᄢℂᎿ A ⿒⍹ ᥙ‫ޔ‬ᅏፉ ノᤘ A‫ޔ‬㚂⮮ ໪
ᄙ⥄↱ᐲࡂࡒ࡞࠻ࡦ♽ߦ߅ߌࠆㆃ޿✭๺
㕖ᜰᢙ⊛✭๺ߩജቇ⊛⿠Ḯࠍ⠨߃ࠆ‫ޕ‬ㆊ಄ළᶧ૕ߥߤߩᄙ☸ሶ♽ߦ⷗ࠄࠇࠆ
㐳ᤨ㑆ߩ㕖ᜰᢙ⊛✭๺ߩേജቇ⊛ߥ⸃㉼ࠍᓧࠆߚ߼ߦ‫⎇ᧄޔ‬ⓥߢߪജቇ♽ℂ⺰ߩ┙႐߆ࠄ‫ޔ‬ዋᢙ⥄↱ᐲജቇ♽ߦ⷗ࠄࠇࠆ
ࡌࠠ⊛✭๺‫ޔ‬㐳ᤨ㑆⋧㑐ߩ⎇ⓥࠍ‫ޔ‬ᄙ⥄↱ᐲ♽߳ᔕ↪ߔࠆߎߣࠍ⋡ᮡߣߔࠆ‫ޕ‬
ዋᢙ⥄↱ᐲࡂࡒ࡞࠻ࡦ♽ߦ߅޿ߡߪ‫ޔ‬૏⋧ⓨ㑆ౝߩ㓚ოߦࠃߞߡ㐳ᤨ㑆⋧㑐߇↢ߺ಴ߐࠇࠆߎߣ߇ࠃߊ⎇ⓥߐࠇߡ޿ࠆ‫ޕ‬
゠㆏߇‫ⷙޔ‬ೣ⊛ߥㆇേߦኻᔕߔࠆ KAM ࠻࡯࡜ࠬ߿ਛ┙቟ቯߥ๟ᦼ゠㆏ᣖߥߤߩ૏⋧ⓨ㑆᭴ㅧߩㄭறߦ㐳ᤨ㑆⇐߹ࠆߎߣ
ߦࠃࠅ‫⋧ޔ‬㑐㑐ᢙ‫ޔ‬ౣᏫᤨ㑆ಽᏓߥߤߩ⛔⸘㊂ߪ㐳ᤨ㑆㗔ၞߢࡌࠠ⊛ᝄࠆ⥰޿ࠍ␜ߔ‫ߥ߁ࠃߩߎޔߢߎߘޕ‬㐳ᤨ㑆⋧㑐ߩ
⥄↱ᐲଐሽᕈࠍ⺞ߴࠆߚ߼ߦ‫ޔ‬bouncing ball orbits
ࡆ࡝ࡗ࡯࠼♽ߩਛ┙๟ᦼ゠㆏ᣖ߇ሽ࿷ߔࠆᄙ૕೰૕☸ሶ♽ߦ߅ߌ
ࠆౣᏫᤨ㑆ಽᏓߩ㐳ᤨ㑆㗔ၞߢߩᝄࠆ⥰޿ߦᵈ⋡ߔࠆ‫ޕ‬ౣᏫᤨ㑆ಽᏓߪ‫ޔ‬૏⋧ⓨ㑆ߩ޽ࠆ㗔ၞ߆ࠄ಴ߚ゠㆏߇ᰴߦߘߩ㗔
ၞߦౣᏫߔࠆ߹ߢߩᤨ㑆ߩಽᏓߢ޽ࠅ‫ޔ‬ജቇ♽ߩേ⊛ᕈ⾰ࠍ⺞ߴࠆߚ߼ߩ㊂ߣߒߡࠃߊ⎇ⓥߐࠇߡ޿ࠆ‫ޕ‬
ᧄⓂߢߪ‫ޔ‬2 ૕ࡆ࡝ࡗ࡯࠼♽
▫ߩਛߩ 2 ߟߩ೰૕☸ሶߦ߅ߌࠆౣᏫᤨ㑆ಽᏓ߇㐳ᤨ㑆㗔ၞߢࡌࠠಽᏓ P(T)㨪T㧙γߣߥ
ࠅ‫ߩࠠࡌޔ‬ᜰᢙߣ☸ሶᢙߣߩ㑐ଥߪγ =N+2 ߣߥߞߡ޿ࠆߎߣࠍ␜ߔ‫ޔߦࠄߐޕ‬ౣᏫᤨ㑆ಽᏓߪౣᏫ㗔ၞߩขࠅᣇߦଐሽ
ߒߡ޿ࠆߎߣ߽ႎ๔ߔࠆ‫ޕ‬ౣᏫ㗔ၞࠍዊߐߊߔࠆߣ‫ޔ‬ౣᏫᤨ㑆ಽᏓߪࡌࠠಽᏓ߆ࠄᜰᢙಽᏓߦㄭߠ޿ߡ޿ߊ‫ޕ‬
໦ঊ൲ႁ‫ڠ‬ΏηντȜΏοϋًͥ͢ͅ႖‫סݕ‬ఘඅ଻!
᧲ർᄢᎿቇ⎇ⓥ⑼ A‫᧲ޔ‬ർᄢᵹ૕⎇ B 㡆ᶏ ቁਯ A‫ޔ‬ᓼጊ ㆏ᄦ‫ޔ‬ኹ↰ ᒎ↢ B
⚿᥏ൻࠍㆱߌߡᶧ૕ࠍ಄ළߔࠆߣ‫ޔ‬ㆊ಄ළᶧ૕⁁ᘒࠍ⚻ߡࠟ࡜ࠬ߳ߣᄌൻߔࠆ‫ޕ‬
ࠟ࡜ࠬߪ᭽‫ߥޘ‬႐ᚲߢᔕ↪ߐࠇߡ޿ࠆ㕖Ᏹߦ᦭↪ߥ‛⾰ߢ޽ࠆ‫ޔߒ߆ߒޕ‬ᶧ૕߆
ࠄࠟ࡜ࠬ߳ߩㆫ⒖ࡔࠞ࠾࠭ࡓߪℂ⺰⊛ߦቢోߦℂ⸃ߐࠇߡ޿ࠆࠊߌߢߪߥ޿‫߹ޕ‬
ߚ‫ߦ⊛⾰ᧄߪࠬ࡜ࠟޔ‬㕖ᐔⴧ⁁ᘒߢ޽ࠅ‫⃻ޔ‬ሽߔࠆࠃ߁ߥᐔⴧ⁁ᘒߦኻߔࠆℂ⺰
ߢᛒ߁ߩߪ࿎㔍߇઻߁‫ᦼ߇࡯࡞ࠬࠢࠗ࡟ࡉߥ⊛⾰ᧄ߼ߚߩߘޕ‬ᓙߐࠇࠆ‫ޕ‬
ᚒ‫ߪޘ‬ㆊ಄ළᶧ૕⁁ᘒࠍᷓߊℂ⸃ߔࠆߎߣߦࠃࠅࠟ࡜ࠬㆫ⒖ࡔࠞ࠾࠭ࡓࠍℂ⸃
ߔࠆߎߣࠍ⋡ᜰߔ‫ߦ߼ߚߩߘޕ‬ಽሶേജቇࠪࡒࡘ࡟࡯࡚ࠪࡦࠍ↪޿ߡ 2 ᚑಽᵹ૕
ߩㆊ಄ළᶧ૕⁁ᘒࠍ⸘▚ᯏ਄ߢታ⃻ߐߖ‫ߩߘޔ‬᭽‫․ߥޘ‬ᕈࠍ⺞ߴߚ‫ޔߪߢ⴫⊒ᧄޕ‬
㕒⊛ߥ‛ℂ㊂ߣߒߡ࿶ജߦߟ޿ߡ‫ߚ߹ޔ‬േ⊛ߥ‛ℂ㊂ߣߒߡᐔဋੑਸ਼ᄌ૏ߣᗵฃ
₸ߦߟ޿ߡ‫ߢࡦ࡚ࠪ࡯࡟ࡘࡒࠪߦߢ߹ࠇߎޔ‬ᓧࠄࠇߚ⚿ᨐࠍߘࠇߙࠇ⚫੺ߔࠆ‫ޕ‬
࿑㧦ฦ᷷ᐲߦ߅ߌࠆᐔဋੑਸ਼ᄌ૏
ুဇ΀ΥσΆȜρϋΡΑΉȜίຝ௨̤̫ͥͅȂ௸̞۱გ͂ಁ̞۱გ!
਻ᄢℂ ᶎᧄ ੧‫ޔ‬ዊ↰၂ ቁ
ᶧ૕㧙ࠟ࡜ࠬォ⒖ߢߪࠟ࡜ࠬォ⒖᷷ᐲ
Tgઃㄭߢᾲജቇ⊛ߥ⇣Ᏹᕈ෸߮‫ޔ‬
ේሶߩㅦ޿ㆇേߣㆃ޿ㆇേ߇ಽ㔌ߔࠆേ⊛⇣Ᏹᕈ߇᷹ⷰߐࠇߡ޿ࠆ‫ޕ‬ㄭᐕേ
⊛‫ޔ‬ᾲജቇ⊛⇣Ᏹᕈࠍ⛔৻⊛ߦ⺑᣿ߔࠆឬ௝ߣߒߡ⥄↱ࠛࡀ࡞ࠡ࡯࡜ࡦ࠼ࠬ
ࠤ࡯ࡊ
FELឬ௝߇ᵈ⋡ߐࠇߡ޿ࠆ‫ޕ‬
FEL ឬ௝ߢߪ㜞᷷ߢߪᐔမߛ߇‫ޔ‬ૐ᷷ߢߪᄙ⼱᭴ㅧߣߥࠆߚߊߐࠎߩᭂ
ዊࠍ߽ߟ⥄↱ࠛࡀ࡞ࠡ࡯ࠍ⠨߃ࠆ‫ࠬ࡜ࠟޕ‬ォ⒖ὐߪ‫߆ࡦࠬࠗࡌߩߟ৻߇♽ޔ‬
ࠄ᷹ⷰᤨ㑆ౝߦᛮߌ಴ߖߥߊߥࠆὐߣߒߡ⺑᣿ߐࠇࠆ‫ޕ‬
Adam and Gibbs ߦ ࠃ ߞ ߡ ዉ ౉ ߐ ࠇ ߚ ද ⺞ ✭ ๺ 㗔 ၞ Cooperatively
Rearranging Region : CRR⒟ᐲߦోߡߩ⥄↱ᐲࠍ኿ᓇߒ‫ޔ‬FEL ࠃࠅዉ߆ࠇ
ࠆᤨ㑆ଐሽᕈࠍᤨ㑆ଐሽߔࠆࠡࡦ࠷ࡉ࡞ࠣ࡯࡜ࡦ࠳࠙ᣇ⒟ᑼ
TDGLဳߣ઒ቯ
ߔࠆ‫✭ޔߣࠆߔޕ‬๺ㆊ⒟ߪ CRR ߦࠃࠅᒛࠄࠇࠆⓨ㑆ਛߢߩ⏕₸ㆊ⒟ߣߥࠆ‫ޕ‬
ᧄ⎇ⓥߢߪ FEL ߩᒻࠍ઒ቯߒ‫₸⏕ޔ‬ㆊ⒟ࠍ TDGL ဳߣߒߚ 1 ᰴర࠻ࠗࡕ
࠺࡞ࠍ⸃ᨆߔࠆ‫⚿ߩߎޕ‬ᨐ‫ޔ‬ㅦ޿✭๺ߣㆃ޿✭๺ߪߘࠇߙࠇࡌࠗࠬࡦౝߩᝄ
േ‫ࡦࠬࠗࡌޔ‬㑆ߩࠫࡖࡦࡊㆇേߣߒߡ⺑᣿಴᧪ࠆ੐ࠍ␜ߔ‫ޕ‬
38
֚ষࡓඵਹ࢐۟࿅߿͈‫ܖ‬ೲેఠ̤̫ͥͅΑάϋΈρΑ!
ᣣᄢℂᎿ ㊁᧛ ␭༑‫ޔ‬ጊਛ 㓷ೣ
ੑ㊀੤឵ᮨဳߪฎߊ߆ࠄ⋓ࠎߦ⎇ⓥߐࠇߡ߈ߚ‫ߩߎޕ‬ᮨဳߩၮᐩ⁁ᘒ߇
ࠬࡇࡦࠣ࡜ࠬ⊛ߢ޽ࠆߣ޿߁ᜰ៰ߪ de Gennes ߩೋᦼߩ⺰ᢥߦ߅޿ߡᣢ
ߦᜰ៰ߐࠇߡ޿ࠆ‫ޕ‬ㄭᐕᄙߊߩᢥ₂ߢࡕࡦ࠹ࠞ࡞ࡠᴺ╬ߦࠃࠅၮᐩ⁁ᘒ߇
⺞ߴࠄࠇߡ޿ࠆ߇‫⁁ࠬ࡜ࠣࡦࡇࠬޔ‬ᘒߩ⹦⚦ࠍᛒߞߚ⎇ⓥߪዋߥ޿‫ޕ‬
ᧄ⎇ⓥߢߪ‫⁁ࠬ࡜ࠣࡦࡇࠬߩߎޔ‬ᘒࠍ⹦⚦ߦ⺞ߴߚ‫ߪߢߎߎޕ‬ੑ㊀੤឵
ᮨဳߣߒߡ‫ޔ‬ዪ࿷ࠬࡇࡦ㑆ߦ੤឵⋧੕૞↪ࠍขࠅ౉ࠇߚ߽ߩࠍᛒ߁‫ޔߚ߹ޕ‬
ᦨㄭធߩ㘧߮⒖ࠅⓍಽߛߌߩᮨဳߩ႐ว‫ޔ‬ᄙߊߩࡄ࡜ࡔ࡯࠲㗔ၞߢࡃࡦ࠼
᭴ㅧ߇ᐔမࡃࡦ࠼ߣߥࠆߎߣ߇⍮ࠄࠇߡ޿ࠆߚ߼‫⎇ᧄޔ‬ⓥߢߪࡃࡦ࠼᭴ㅧ
ߩ቟ቯൻߩߚ߼ᰴㄭធߩ㘧߮⒖ࠅⓍಽ߽ዉ౉ߒߚᮨဳࠍ⠨߃ߚ‫ޕ‬ၮᐩ⁁ᘒߪዪ࿷ࠬࡇࡦߩ⋧ኻⷺߩ᳢㑐ᢙߣߒߡਈ߃ࠄࠇ
ࠆ߇‫౒ޔ‬ᓎ൨㈩ᴺࠍ↪޿ߡߎࠇࠍᦨㆡൻߒၮᐩ⁁ᘒࠍ᳞߼ߚ‫ޕ‬ၮᐩ⁁ᘒߦ߅޿ߡ‫ޔ‬વዉ㔚ሶߩㇱಽߪࡄࠗࠛ࡞ࠬਇ቟ቯᕈ
ߩߚ߼㘧߮⒖ࠅⓍಽߦ⥄⊒⊛ߦᄌ⺞ࠍ⿠ߎߔ‫ࡦࡇࠬޔߚ߹ޕ‬ㇱಽߪߘߩᄌ⺞ࠍ෻ᤋߒߚᄌ⺞᭴ㅧࠍ߽ߟ߇‫⋧ޔ‬ኻⷺߩߩߚ
߼ߦᏂⷞ⊛ߦ❗ㅌߒߡ޿ࠆ‫ࡦࡇࠬޔߚ߹ޕ‬᭴ㅧߪᄙߊߩḰ቟ቯ⁁ᘒࠍ߽ߜ‫౒ޕࠆ޿ߡߞߥߣ⊛ࠬ࡜ࠣࡦࡇࠬޔ‬ᓎ൨㈩ᴺߦ
߅ߌࠆᦨㆡൻᄌᢙߩᢙߣ⸘▚ᤨ㑆ߩ㑐ଥ╬߽⠨ኤࠍⴕߞߚ‫ޕ‬
ͺκσέ͹Α‫ً͍ݞ‬႖‫סݕ‬ఘ Si ͈ࢹ௮་‫ا‬ȇల֚ࡔၑ MD ͥ͢ͅ Si ͈εςͺκσέͻΒθ͈ٜྶ!
↥✚⎇⸘▚⑼ቇ ᫪ਅ ᔀ਽
ࠪ࡝ࠦࡦߪ᳓ߣ౒ㅢߥᕈ⾰ࠍᄙߊᜬߟ‫߽ࠄߜߤޕ‬Ᏹ࿶ਅߩ⚿᥏ߢߪ྾㕙૕᭴ㅧ߆ࠄᚑࠆ࠳ࠗࡗࡕࡦ࠼ဳ᭴ㅧࠍߣࠅ‫ࠕޔ‬
ࡕ࡞ࡈࠔࠬ߿ᶧ૕⁁ᘒߢ߽ߘߩ྾㕙૕᭴ㅧߩࡀ࠶࠻ࡢ࡯ࠢ߇଻ᜬߐࠇߡ޿ࠆ‫ߚ߹ޕ‬࿶ജჇടߦ઻޿Ⲣὐ߇ᷫዋߔࠆߚ߼‫ޔ‬
ᶧ૕ߩᣇ߇⚿᥏ࠃࠅኒᐲ߇㜞޿‫ޔࠄ߆ߣߎߚߒ߁ߎޕ‬᳓ߢ⼏⺰ߐࠇߡ޿ࠆࡐ࡝ࠕࡕ࡞ࡈࠖ࠭ࡓ߇ Si ߦ߽ㆡ↪ߢ߈ࠆߣᕁ
ࠊࠇࠆ‫ޕ‬ᚒ‫ ߪޘ‬Si ߩࡐ࡝ࠕࡕ࡞ࡈࠖ࠭ࡓࠍ╙৻ේℂಽሶേജቇ⸘▚ߦࠃߞߡ⺞ߴ߈ߡ޿ࠆ‫⻠ᧄޕ‬Ṷߢߪ࿶ജᄌൻߦ઻߁
ࠕࡕ࡞ࡈࠔࠬ Si ߩ LDA-HDA ォ⒖‫ޔ‬෸߮ㆊ಄ළߦ઻߁ᶧ૕ Si ߩ᭴ㅧᄌൻߦߟ޿ߡႎ๔ߔࠆ[1,2]‫ޕ‬
ㅢᏱߩࠕࡕ࡞ࡈࠔࠬ Si (LDA)ߢߪ‫ޔ‬4 ㈩૏ߩࡀ࠶࠻ࡢ࡯ࠢ᭴ㅧ߇ᒻᚑߐࠇߡ޿ࠆ‫ޕ‬ᚒ‫ ߢ▚⸘ߩޘ‬LDA ࠍᏱ᷷ਅߢട࿶
ߒߚߣߎࠈ‫ޔ‬12GPa ㄭறߢኒᐲߩᕆỗߥჇട߇⿠ߎࠅ‫ޔ‬LDA ߣߪోߊ⇣ߥࠆᕈ⾰ࠍᜬߟ㜞ኒᐲࠕࡕ࡞ࡈࠔࠬ⋧
HDA
ߦォ⒖ߒߚ[1]‫ࠬࠔࡈ࡞ࡕࠕߩߎޕ‬᭴ㅧߩ㈩૏ᢙߪ⚂ 5 ߢ‫ޔ‬᳓ߩ HDA ߣ㕖Ᏹߦㄭ޿᭴ㅧߢ޽ࠆߎߣ߇ࠊ߆ߞߚ‫ޕ‬㜞࿶⚿
᥏⋧ߢ޽ࠆβ -tin ᭴ㅧߣ߽ㄭ޿᭴ㅧߢ޽ࠅ‫ޔ‬ඨዉ૕߆ࠄ㊄ዻൻߒߚߣᕁࠊࠇࠆ‫ޕ‬
Ᏹ࿶ਅߩᶧ૕ Si ߩㆊ಄ළߦ઻߁ኒᐲ࡮᭴ㅧᄌൻ߽⺞ߴߚ‫ޕ‬ታ㛎ߢㆊ಄ළߢ߈ࠆ᷷ᐲ㗔ၞߪ㒢ࠄࠇߡ޿ࠆߚ߼‫߹ࠇߎޔ‬
ߢߦኒᐲ߿ᶧ૕᭴ㅧߩ᷷ᐲᄌൻߦߟ޿ߡ⛔৻⊛ߥℂ⸃ߪ⏕┙ߐࠇߡ޿ߥ߆ߞߚ‫ࠄ߇ߥߒ߆ߒޕ‬ᚒ‫ޔߡߞࠃߦ▚⸘ߩޘ‬ኒᐲ
ߪ 1200K ߢᭂᄢߣߥࠆߎߣ߇᣿ࠄ߆ߦߥࠅ‫ޔ‬ዪᚲ⊛ߥ྾㕙૕᭴ㅧߩ࿁ᓳ߇ 1200K એਅߢᕆㅦߦㅴ߻ߎߣ߇ࠊ߆ߞߚ[2]‫ޕ‬
ߎߩࠃ߁ߥ᭴ㅧᄌൻߪ‫ޔ‬㈩૏ᢙߩ⇣Ᏹߥ᷷ᐲᄌൻࠍ߽ߚࠄߔߎߣ߽ࠊ߆ߞߚ‫ޕ‬
[1] T. Morishita, Phys. Rev. Lett. 93, 055503 (2004).
[2] T. Morishita, Phys. Rev. Lett. 97, 165502 (2006).
΄ρΑࠁ଼໤ৗ̤̫ͥͅ๱஌ࠁ΀ΥσΆȜ؊൞͂ໝள๤෎!
਻ᄢ㒮ℂ ↰Ꮉ ᢥ㓉‫ޔ‬ዊ↰၂ ቁ
ㄭᐕ‫ࠬ࡜ࠟޔ‬ォ⒖ὐㄭறߩ♽ߩㆇേࠍ․ᓽઃߌࠆᣇᴺߣߒߡ‫ߩ࡯ࠡ࡞ࡀࠛ↱⥄߇♽ޔ‬ᄙߊߩ⼱
ࡌࠗࠬࡦ߆ࠄ᭴ᚑߐࠇ
ࠆ࡜ࡦ࠼ࠬࠤ࡯ࡊౝࠍㆇേߔࠆߣ޿߁⥄↱ࠛࡀ࡞ࠡ࡯࡜ࡦ࠼ࠬࠤ࡯ࡊឬ௝ߦᵈ⋡߇㓸߹ߞߡ޿ࠆ‫ޕ‬
ᚒ‫ޔߪޘ‬ㆊ಄ළᶧ૕ߢߩ♽ߩㆃ޿ㆇേߩ․ᓽࠍขࠅ౉ࠇ‫ࡊ࡯ࠤࠬ࠼ࡦ࡜࡯ࠡ࡞ࡀࠛ↱⥄ޔ‬ౝࠍ♽ߩઍ⴫ὐ߇⏕₸⊛ߦㆇ
േߔࠆឬ௝ࠍឭ᩺ߒߚ‫ߩ♽ޔߪࠇߎޕ‬ㆃ޿ㆇേࠍࡌࠗࠬࡦ㑆ߩㆫ⒖ߣߒߡ‫࡯࠲ࠬࡑޔ‬ᣇ⒟ᑼߢ⴫ߒ‫ޔ‬ㅦ޿ㆇേࠍࡌࠗࠬࡦ
ߢߩᝄേߣߒߡ⴫ߒߚ߽ߩߢ޽ࠆ‫ޕ‬
39
ᧄ⊒⴫ߢߪ‫ߩߎޔ‬ឬ௝ࠍ↪޿‫ޔ‬ᝄേߔࠆ᷷ᐲߦኻߔࠆࠛࡀ࡞ࠡ࡯ᔕ╵ࠍ⸥ㅀߒ‫ޔ‬1 ᰴ࡮2 ᰴߩᔕ╵ࠍ․ᓽઃߌࠆ‫ޔ‬1 ᰴ
ⶄ⚛Ყᾲ࡮2 ᤨⶄ⚛Ყᾲࠍឭ᩺ߔࠆ‫ࠬ࡜ࠟޔߦࠄߐޕ‬ォ⒖ὐㄭறߢߩㆃ޿࠳ࠗ࠽ࡒࠢࠬߩ․ᓽࠍขࠅ౉ࠇߚࡕ࠺࡞ߢߩએ
ਅߩ⚿ᨐࠍ⚫੺ߔࠆ‫ޕ‬
1㧚1 ᰴ࡮2 ᰴߩⶄ⚛Ყᾲߩᝄേᢙଐሽᕈ߆ࠄ‫ࠬ࡜ࠟޔ‬ォ⒖᷷ᐲ Tg‫ޔ‬Vogel-Fulcher ᷷ᐲ T0 ࠍ᳿߼ࠆߎߣ߇ߢ߈ࠆ‫ޕ‬
2㧚ࡌࠗࠬࡦ㑆ߩㆫ⒖ࠍ․ᓽઃߌࠆ‫ޔ‬ㆫ⒖ⴕ೉ߩ࿕᦭୯λߩ⛔⸘㊂䇴λ䇵㨮䇴λ2䇵㨮䇴λ㧙1䇵ࠍ㧝ᰴⶄ⚛Ყᾲߩᝄേᢙଐሽᕈ߆ࠄ
᳿߼ࠆߎߣ߇ߢ߈ࠆ‫ޕ‬
‫ࠬݱ‬ୄͺσήηϋ͈΄ρΑഢ֊ͅ‫̳͖ݞ‬କ໦‫܄‬ၾ͈‫!ޣג‬
㘩✚⎇‫ޔ‬ᶏᵗᄢ A‫᧲ޔ‬Ꮏᄢ B Ꮉ੗ ᷡม‫ޔ‬㋈ᧁ ᔀ A‫ޔ‬ዊ࿡ ᱜ᥍ B
䇼ࡄ‫ݪ‬෸ࠊ‫͍ݞ‬࿒എ‫ޤ‬᳓๺࠲ࡦࡄࠢ⾰ߪ಄ළ߿ੇ῎ߦࠃߞߡࠟ࡜ࠬォ⒖ߔࠆ߇‫ࠬ࡜ࠟޔ‬ォ⒖ߦ઻߁ᄖㇱᔕ╵
ᾲኈ㊂ᄌൻߥ
ߤ߇㕖Ᏹߦዊߐߊ‫ߚ߹ޔ‬ᐢ޿᷷ᐲ▸࿐ߢ⿠ߎࠆ‫ޔ߼ߚߩߘޕ‬᳓๺࠲ࡦࡄࠢ⾰ߩࠟ࡜ࠬォ⒖ࠍ᣿⏕ߦᝒ߃ࠆߎߣߪ࿎㔍ߣ
ߐࠇߡ߈ߚ‫ߦߢ߹ࠇߎޕ‬Ṷ⠪ࠄߪ‫ޔ‬ᄢኈ㊂ߩ⹜ᢱࠍ↪޿ߚᢿᾲဳᾲ㊂⸘ߦࠃࠆࠛࡦ࠲࡞ࡇ࡯✭๺ㅦᐲ
dH/dt᷹ቯࠍ⃿⁁
࠲ࡦࡄࠢ⾰ߢ޽ࠆ‐ⴊᷡࠕ࡞ࡉࡒࡦ
BSAߦㆡ↪ߔࠆߎߣߢ‫ޔ‬BSA ᳓ṁᶧߦ߅ߌࠆⶄᢙߩࠟ࡜ࠬォ⒖߿ੇ῎ BSA ߦ߅
ߌࠆ 155K ߢߩࠟ࡜ࠬォ⒖ࠍ᣿ࠄ߆ߦߒߡ߈ߚ‫ߩࠄࠇߎޕ‬⍮⷗ࠍᷓൻߔࠆߚ߼‫⎇ᧄޔ‬ⓥߢߪ᭽‫ߥޘ‬᳓ಽ฽㊂ߦ⺞⵾ߒߚ
BSA ߩࠟ࡜ࠬォ⒖ࠍ⺞ߴ‫ޔ‬ᣢႎߩ⚿ᨐߣᲧセߔࠆߎߣߢ‫ޔ‬᳓๺࠲ࡦࡄࠢ⾰ߦ߅ߌࠆⶄᢙߩࠟ࡜ࠬォ⒖ߩⷐ࿃ࠍ⠨ኤߒߚ‫ޕ‬
䇼༹༷‫ޤ‬㘻๺Ⴎߦࠃߞߡ⋧ኻḨᐲࠍ⺞⵾ߒߚ࠺ࠪࠤ࡯࠲ౝߦ BSA ੇ῎☳ᧃࠍ଻ߟߎߣߢ‫ޔ‬᭽‫ߥޘ‬᳓ಽ฽㊂ߩ BSA ⹜ᢱ
⚂ 0‫ޔ‬4.4‫ޔ‬10.9‫ޔ‬19.2‫ޔ‬30.0㧑 w/wࠍ⺞⵾ߒ‫ޔ‬50㨪300K ߩ᷷ᐲ▸࿐ߢ dH/dt ᷹ቯࠍⴕߞߚ‫ޕ‬
䇼ࠫ‫ࣉ͍ݞض‬ख़‫ޤ‬᳓ಽ฽㊂߇⚂ 0㧑ߩ BSA ߦߪࠟ࡜ࠬォ⒖ߪ⹺߼ࠄࠇߥ߆ߞߚ߇‫ޔ‬4.4㧑ߩ BSA ߦߪ 139K ઃㄭߦࠟ࡜ࠬ
ォ⒖߇⹺߼ࠄࠇߚ‫ ߦᦝޕ‬10.9㧑ߩ BSA ߦߪ‫ޔ‬90㨪270K ߩ᷷ᐲ▸࿐ߦ߅޿ߡ 2 ߟߩࠟ࡜ࠬォ⒖߇‫ޔ‬19.2㧑ߩ BSA ߦߪ
90K એ਄ߩ᷷ᐲ▸࿐ߦ߅޿ߡ 3 ߟߩࠟ࡜ࠬォ⒖߇⷗಴ߐࠇߚ‫ޕ‬᳓ಽ฽㊂߇ 30.0㧑ߦ㆐ߔࠆߣ‫ޔ‬᳓ߩ᣹᷷⚿᥏ൻ෸߮Ⲣ⸃
߇⿠ߎࠅ‫ ߇ࠄࠇߘޔ‬160K એ਄ߩ✭๺᜼േࠍⷒ޿㓝ߒߚ‫⹜ߩߎߢߎߘޕ‬ᢱࠍ 200-220K ߢࠕ࠾࡯࡞ߒ‫⚿ޔ‬᥏ൻߩ⊒ᾲࠍ
㒰ߊߣ‫ޔ‬190K ઃㄭߦࠟ࡜ࠬォ⒖ࠍ⷗಴ߔߎߣ߇ߢ߈ߚ‫ޕ‬એ਄ߩ⚿ᨐࠍᣢႎߩ⚿ᨐߣ૬ߖߡ⁁ᘒ࿑ߣߒߡᢛℂߒߚߣߎࠈ‫ޔ‬
᳓๺࠲ࡦࡄࠢ⾰ߩࠟ࡜ࠬォ⒖ߪᄢ߈ߊ 3 ߟߩㆊ⒟ߦಽ㘃ߐࠇࠆߎߣ߇␜ໂߐࠇߚ‫ࠬ࡜ࠟߩࠄࠇߎޕ‬ォ⒖ㆊ⒟ߪૐ᷷߆ࠄ‫ޔ‬
1.࠲ࡦࡄࠢ⾰ߣ᳓⚛⚿วߒߚ᳓
᳓๺᳓‫ޔ‬2.᳓๺᳓ㄭறߦ૏⟎ߔࠆ࠲ࡦࡄࠢ⾰ߩⷫ᳓ᕈ஥㎮‫ޔ‬3.࠲ࡦࡄࠢ⾰ߩਥ㎮‫ࠃߦޔ‬
ࠆ߽ߩߣ⠨߃ࠄࠇࠆ‫ޕ‬
ΫͼηΘΖȜσ߿߄௺॒ఘఉࢢৗࠫએඤ͈;΁ȜΗȜ΢ΦΙνȜή͈Θͼ΢η·Α!
᧲ᄢ‛ᕈ⎇‫᧲ޔ‬ℂᄢℂ A ਈ㇊Ꭸ ੫‫ޔ‬ጊቶ ୃ‫⩵ޔ‬࿾ 㦖ᒎ‫ޔ‬ᄢ⇌ 㓶Ꮧ A‫↰ޔ‬ᚲ ⺈ A
࠽ࡁⓨ㑆ߦ㐽ߓㄟ߼ࠄࠇߚ᳓ߩ᜼േߪࡃ࡞ࠢߩ᳓ߣ⇣ߥࠆ‛ᕈࠍ␜ߔߎߣ߇⍮ࠄࠇߡ޿ࠆ‫⴫ޕ‬㗴‛⾰ߢߪ‫࠳ࡒࠗࡆޔ‬
㧙
࠱࡯࡞ဳ㊄ዻ㍲૕ߢ޽ࠆ[Co.(H2bim)3]3+ߣࠞ࡞ࡏࡦ㉄⺃ዉ૕[TMA]3 ߣߢ᭴ᚑߐࠇߚᄙሹ⾰⚿᥏ౝߦ‫ޔ‬ᡆ৻ᰴర᭴ㅧߩ
᳓ࠢ࡜ࠬ࠲࡯߇ሽ࿷ߔࠆ‫ߩߎޕ‬᳓ࠍ࠙ࠜ࡯࠲࡯࠽ࡁ࠴ࡘ࡯ࡉ
એਅ WNTߣ๭߱‫⎇ᧄޕ‬ⓥߢߪ WNT ߩࡒࠢࡠߥ࠳ࠗ࠽ࡒ
ࠢࠬࠍ᣿ࠄ߆ߦߔࠆ⋡⊛ߢ‫‛ޔ‬ᕈ⎇ߩ AGNES ಽశེࠍ↪޿ߡਛᕈሶᢔੂታ㛎ࠍⴕߥߞߚ‫ోޕ‬ේሶᢙߩ߁ߜ WNT ߩഀ
วߪ 10㧑⒟ᐲߢ޽ࠆ߇‫ޔ‬ᚒ‫ߪޘ‬㕖ᒢᕈᢔੂᚑಽࠍᏅߒᒁ޿ߡ⸃ᨆߔࠆߎߣߢ‫ޔ‬ዋ㊂ߩ WNT ߩḰᒢᕈᢔੂᚑಽࠍขࠅ಴
ߔߎߣߦᚑഞߒߚ‫࠷ࡦ࡟࡯ࡠࠍࠇߘޕ‬㑐ᢙߢࡈࠖ࠶࠻ߒ‫ޔ‬ඨ୯ඨ᏷ߩㆇേ㊂ㆫ⒖ଐሽᕈࠍࠫࡖࡦࡊ᜛ᢔࡕ࠺࡞ߦࠃࠅ⸃ᨆ
ߒߚ‫ޕ‬WNT ߩ 268K ߢߩ᜛ᢔଥᢙߪ 4.5˜1011Έ2/s ߢ޽ࠅ‫ࠢ࡞ࡃޔ‬᳓
એਅ BWߩ 1.0˜1011Έ2/s ߦᲧߴߡ᣿ࠄ߆ߦᄢ
߈ߊߥߞߡ޿ࠆߎߣ߇ಽ߆ߞߚ‫ߦࠄߐޕ‬᳓ಽሶߩᐔဋ⒖േ〒㔌߿ṛ࿷ᤨ㑆߽ BW ࠃࠅ㐳ߊߥࠆߎߣ߇ಽ߆ߞߚ‫ߪࠇߎޕ‬
ᡆ৻ᰴర᭴ㅧࠍߣࠆߎߣߢ᳓⚛⚿วࡀ࠶࠻ࡢ࡯ࠢ߇ᒙ૕ൻߔࠆߎߣߦ⿠࿃ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
ͼ΂ϋΊσ PMMA/EMITFSI ͈΄ρΑഢ֊͂ͼ΂ϋ‫ڐ‬८‫!ࢹܥ‬
᧲ᄢ‛ᕈ⎇‫ޔ‬ᮮ࿖ᄢᎿ A ᨴ⼱ ᱞ♿‫ޔ‬ጊቶ ୃ‫⩵ޔ‬࿾ 㦖ᒎ‫ޔ‬਄ᧁ ጪ჻ A‫ޔ‬ᷰㆺ ᱜ⟵ A
ࠗࠝࡦࠥ࡞ߪࡐ࡝ࡑ࡯ߩ✂⋡᭴ㅧߩਛߦࠗࠝࡦᶧ૕߇ขࠅㄟ߹ࠇߚࠥ࡞ߢ޽ࠆ‫ޔߪ࡞ࠥߩߎޕ‬ᓥ᧪ߩ㜞ಽሶ࿕૕㔚⸃⾰
ߦᲧߴߡ‫ޔ‬㕖Ᏹߦ㜞޿ࠗࠝࡦવዉᕈࠍ␜ߔߎߣ߇ႎ๔ߐࠇߡ޿ࠆ‫੹ޕ‬࿁ᚒ‫࡞࡝ࠢࠕޔߪޘ‬᮸⢽ PMMA ߣࠗࠝࡦᶧ૕
40
EMITFSI ߆ࠄᚑࠆࠗࠝࡦࠥ࡞ߦߟ޿ߡ‫᧲ޔ‬ᄢ‛ᕈ⎇ߩ AGNES ಽశེࠍ↪޿ߡਛᕈሶᢔੂታ㛎ࠍⴕ޿‫࡞ࠥޔ‬ਛߢߩ
EMITFSI ߩ ᜛ ᢔ ㆇ േ ‫ ߦ ․ ޔ‬EMITFSI ߣ PMMA ߩ ㆇ േ ߩ ⋧ 㑐 ߦ ߟ ޿ ߡ ⺞ ߴ ߚ ‫ ޕ‬ታ 㛎 ߢ ߪ ‫ ࡦ ࠝ ࠗ ޔ‬ᶧ ૕ Ớ ᐲ
0.78[mol/kg]‫ޔ‬1.5[mol/kg]ߩ 2 ⒳㘃ߩ⚵ᚑߩࠥ࡞ߦߟ޿ߡ‫ޔ‬ㅢᏱߩ⹜ᢱߣ‫ޔ‬EMITFSI ߩㆇേࠍ⷗߿ߔߊߔࠆߚ߼ߦ
PMMA ࠍ㊀᳓⚛⟎឵ߒߚ⹜ᢱ߽᷹ቯߒߚ‫ޔߚ߹ޕ‬Ყセߩߚ߼ߦࡃ࡞ࠢߩ EMITFSI ߣ PMMA ߽᷹ቯߒߚ‫ޕ‬ฦ⹜ᢱߦ߅
ߌࠆࡈࠖ࠶࠹ࠖࡦࠣߦࠃࠅ᳞߼ࠄࠇߚ᜛ᢔଥᢙ߿〡べ〒㔌߆ࠄ‫ޔ‬EMITFSI ߪࡃ࡞ࠢ⁁ᘒߢߪࡉ࡜࠙ࡦㆇേ⊛ߥන⚐ߥ᜛
ᢔࠍߒߡ޿ࠆ߇‫߇⋡✂࡞ࠥߪߢ߆ߥߩ⋡✂࡞ࠥޔ‬૞ࠆ቟ቯߥࠨࠗ࠻ߩ㑆ࠍࠫࡖࡦࡊ᜛ᢔߒߡ޿ࠆߎߣ߇ಽ߆ߞߚ‫ࠬࡐޕ‬
࠲࡯ߢߪ‫ޔ‬EMITFSI ߩ᜛ᢔㆇേߩ⚵ᚑଐሽᕈ߿ࠟ࡜ࠬォ⒖ߣߩ㑐ㅪߦߟ޿ߡ߽ㅀߴࠆ‫ޕ‬
΄ρΑഢ֊‫أ‬ഽັ߃͈́ࠫએ‫ݷا‬൲!
᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ ዊ⷏ 㓉჻‫↰ޔ‬ਛ ⡸
ㅢᏱ‫⚿ޔ‬᥏ᚑ㐳ㅦᐲߪ☼ᐲߦ㑐ߔࠆ㗄ߣ⚿᥏ߩ⥄↱ࠛࡀ࡞ࠡ࡯ߦ㑐ߔࠆ㗄ߩⓍߦࠃࠅ⸥ㅀߐࠇ‫࡞࡯࠾ࠕޔ‬᷷ᐲ߇ࠟ࡜ࠬ
ォ⒖᷷ᐲߦㄭߠߊߦߟࠇߡ⚿᥏ൻㅦᐲߪᕆỗߦㆃߊߥࠅ‫ޔ‬ㅢᏱߪࠟ࡜ࠬォ⒖᷷ᐲએਅߢߪ߹ߞߚߊ⚿᥏ൻ߇ㅴⴕߒߥ޿ߣ
⠨߃ࠄࠇߡ޿ࠆ‫ᦨߒ߆ߒޕ‬ㄭ‫ޔ‬ዊ࿡ࠄߩ⎇ⓥࠣ࡞࡯ࡊߪ‫ࠬ࡜ࠟޔ‬ォ⒖᷷ᐲ⋥਄ߢ⚿᥏ൻ߇ଦㅴߐࠇࠆߣ޿߁㛳ߊߴ߈⃻⽎
ࠍᐞߟ߆ߩ‛⾰ߦߟ޿ߡႎ๔ߒߡ޿ࠆ[1]‫ޕ‬
ᧄ⊒⴫ߢߪ‫ޔ‬ᚒ‫ࠬ࡜ࠟߩߎߢ߹੹ߪޘ‬ォ⒖᷷ᐲ⋥਄ߢߩ⚿᥏ଦㅴ߇ႎ๔ߐࠇߡ޿ࠆࠝ࡞࠻࠲࡯ࡈࠚ࠾࡞
OTP߿ࠨ
ࡠ࡯࡞ࠍ↪޿ߡ‫ࠬ࡜ࠟޔ‬ォ⒖᷷ᐲㄭற෸߮એਅߢߩ⚿᥏ᚑ㐳ㅦᐲࠍ᷹ቯߒ‫ޔ‬ᶧ૕ߩᲧセ⊛ㆃ޿✭๺ㆊ⒟
ਥߦαㆊ⒟⒟ᐲ
ߩᤨ㑆ࠬࠤ࡯࡞ߣࠍ⹦⚦ߦᲧセߒߡ޿ࠆ‫⚿ߪߡ޿ߟߦ࡞࡯ࡠࠨޔߦ․ޕ‬᥏ᄙᒻߦ⌕⋡ߒ‫ޔ‬ታ㛎ࠍⴕߞߡ޿ࠆ‫ޔߚ߹ޕ‬㜞
ಽሶ‛⾰ࠍ↪޿ߡ‫ߩ߳⽎⃻ߩߎޔ‬㜞ಽሶᕈ߇ߤߩࠃ߁ߦᓇ㗀ߔࠆߩ߆ߦߟ޿ߡ߽⸅ࠇߡ޿ߊ੍ቯߢ޽ࠆ‫ޕ‬
[1] M. Hatase et al., J. Non-Cryst. Solids, 333, 129 (2004) ߣߘߩਛߢߩᒁ↪ᢥ₂
ࠫએഎಎ‫ݻ‬ၗಉ੬͂൲എະ޳֚଻͈‫۾‬Ⴒ
᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ ᣂ⼱ ኡ‫↰ޔ‬ਛ ⡸
ㆊ಄ළᶧ૕ਛߩേ⊛ਇဋ৻ᕈߩሽ࿷ߪ‫ޔ‬ᄙߊߩታ㛎߿ࠪࡒࡘ࡟࡯࡚ࠪࡦߦࠃࠅ⏕⹺ߐࠇߡ߅ࠅ‫ࠬ࡜ࠟߣࠇߘޔ‬ォ⒖ㄭற
ߢߩᕆỗߥࠬࡠ࡯࠳࠙ࡦߩ㑐ㅪ߽␜ໂߐࠇߡ޿ࠆ߇‫‛ߩߘޔ‬ℂ⊛ߥ⿠Ḯߦ㑐ߒߡߪᧂߛߦߪߞ߈ࠅߣߒߚߎߣߪಽ߆ߞߡ
޿ߥ޿‫ޕ‬
ߎࠇࠍ᣿ࠄ߆ߦߔࠆߚ߼‫ޔ‬ᚒ‫⚿ߪޘ‬᥏ൻ߆ࠄࠟ࡜ࠬൻ߹ߢࠍ⛔৻⊛ߦᛒ߃ࠆ㧞ᰴరࡕ࠺࡞ࠍ㐿⊒ߒ‫ޔ‬ಽሶേജቇࠪࡒࡘ
࡟࡯࡚ࠪࡦࠍⴕߞߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ㆊ಄ළᶧ૕ਛߢ⚿᥏⊛ߥ⒎ᐨࠍᜬߞߚㆊᷰ⊛ߥࠢ࡜ࠬ࠲࡯
⚿᥏⊛ਛ〒㔌⒎ᐨ߇ૐ᷷ߦ
ߥࠆߦߟࠇ⊒㆐ߔࠆߎߣࠍ⊒⷗ߒߚ‫⚿ߩߎޔߪߢ⴫⊒ᧄޕ‬᥏⊛ਛ〒㔌⒎ᐨߣേ⊛ਇဋ৻ᕈߣߩ㑐ㅪߦ㑐ߒߡᓧࠄࠇߚ⚿ᨐ
ࠍ⚫੺ߔࠆ੍ቯߢ޽ࠆ‫ޕ‬
΋υͼΡ΄ρᾼ̤̫ͥ൲എະ޳֚଻
᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ
Ꮉፒ ⁴ผ‫ ᧁ⨹ޔ‬ᱞᤘ‫↰ޔ‬ਛ ⡸
ᄙಽᢔࠦࡠࠗ࠼♽(☸ᓘߦಽᢔࠍ߽ߞߚࠦࡠࠗ࠼♽)ߢߪ‫ޔ‬૕Ⓧಽ₸ߩჇᄢߣߣ߽ߦ‫ޔ‬ή⒎ᐨ⁁ᘒࠍ⛽ᜬߒߚ߹߹☸ሶߩㆇ
േ߇ಓ⚿ߐࠇ‫ࠬ࡜ࠟޔ‬ォ⒖⃻⽎߇ᒁ߈⿠ߎߐࠇࠆ‫⎇ᧄޕ‬ⓥߢߪ‫▚⸘ޔ‬ᯏ⊛ᚻᴺ
Brownian Dynamics ᴺࠍ↪޿ߡ‫ࠬ࡜ࠟޔ‬
ォ⒖ὐㄭறߦ߅ߌࠆ‫ޔ‬ੑᰴరࠦࡠࠗ࠼☸ሶߩ᭴ㅧ࡮࠳ࠗ࠽ࡒࠢࠬࠍ⸃ᨆߒߚ‫ޕ‬᭴ㅧߦ㑐ߒߡߪ‫౐ޔ‬࿁ኻ⒓ᕈࠍ᷹ࠆ⒎ᐨᄌᢙ
(six fold bond-orientational order parameter)ࠍ⸘▚ߒߚ‫ࠬ࡜ࠟޔࠅࠃࠇߎޕ‬ォ⒖ὐㄭறߦ߅޿ߡ‫⚿ޔ‬᥏⊛ਛ〒㔌⒎ᐨ߇ᒻ
ᚑߐࠇߡ޿ࠆߎߣࠍ⷗಴ߒߚ‫ߦࠬࠢࡒ࠽ࠗ࠳ޔߚ߹ޕ‬㑐ߒߡߪ‫ࠬ࡜ࠟޔ‬ォ⒖⃻⽎ߩ⿠Ḯߣ⠨߃ࠄࠇߡ޿ࠆേ⊛ਇဋ৻ᕈࠍ⏕
⹺ߒߚ‫ޕ‬᭴ㅧߣ࠳ࠗ࠽ࡒࠢࠬࠍᲧセߒߚߣߎࠈ‫⚿ޔ‬᥏⊛ਛ〒㔌⒎ᐨࠍᒻᚑߒߡ޿ࠆ☸ሶߪേ߈ߦߊߊ‫ޔ‬⒎ᐨߩૐ޿☸ሶߪേ
߈ᤃ޿ߣ޿߁௑ะࠍ⷗಴ߒߚ‫⚿ޔߚ߹ޕ‬᥏⊛ਛ〒㔌⒎ᐨߩⓨ㑆ಽᏓߣേ⊛ਇဋ৻ߩⓨ㑆ಽᏓߦ㑐ߒߡ߽ᄢ޿ߦ⋧㑐߇⷗ࠄࠇ
ߚ‫ޕ‬ᓥߞߡ‫ࠬ࡜ࠟޔ‬ォ⒖ὐઃㄭߦ߅ߌࠆ‫⚿ޔ‬᥏⊛ਛ〒㔌⒎ᐨߩሽ࿷ߪ‫ޔ‬േ⊛ਇဋ৻ᕈߩ⿠Ḯߩ৻ߟߢ޽ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
41
ߐ൲‫ ئ‬2 ষࡓ໮ၥఘࠏ͈ેఠ஗֊
᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ ᷰㄝ ᢘม‫↰ޔ‬ਛ ⡸
☳☸૕♽ߦ߅޿ߡߪ‫☸ޔ‬ሶࠨࠗ࠭߇ᄢ߈޿ߚ߼ߦᾲំࠄ߉ߩነਈ߇ߥߊ‫☸ߚ߹ޔ‬ሶ㑆ⴣ⓭߇ᢔㅺࠍ઻߁ߚ߼ߦ‫ޔ‬ᄖㇱ߆
ࠄߩࠛࡀ࡞ࠡ࡯ᵹ౉ߦࠃߞߡ♽ߩ⁁ᘒ߇ᄌൻߔࠆ‫ߪ♽ߥ߁ࠃߩߎޕ‬㕖ᐔⴧ‛ℂߩࡕ࠺࡞♽ߣ޿߁ⷰὐ߆ࠄㄭᐕᵈ⋡ߐࠇߡ
޿ࠆ߇‫⋥ޔ‬ធⷰኤ߇ኈᤃߢ޽ࠆߣ޿߁․ᓽ߆ࠄ‫⁁ޔ‬ᘒ㑆ߩㆫ⒖ࠍ⺞ߴࠆߣ޿߁⋡⊛ߦ㑐ߒߡ߽᦭↪ߢ޽ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
ᧄ⎇ⓥߢߪ‫ޔ‬ᝄേߦࠃߞߡ㚟േߐࠇߚ 2 ᰴర☳☸૕♽ߦ⌕⋡ߒߚ‫ޔߪ♽ߩߎޕ‬ᝄേߩടㅦᐲ߿૕Ⓧಽ₸ߩᄌൻߦࠃߞ
ߡ࿕૕⊛ߥ⁁ᘒߣᶧ૕⊛ߥ⁁ᘒߣߩ㑆ࠍㆫ⒖ߔࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ‫੹ޕ‬࿁ߪ☸ᓘߩ⇣ߥࠆ☸ሶࠍᷙวߐߖࠆߎߣߦࠃߞ
ߡ‫⚿ޔ‬᥏ൻߦኻߔࠆࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦࠍዉ౉ߒߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬᭴ㅧߪᶧ૕⊛ߢ޽ࠅߥ߇ࠄ࠳ࠗ࠽ࡒࠢࠬ߇ಓ⚿ߒߚࠟ࡜
ࠬ⊛ߥ⁁ᘒ߇᷹ⷰߐࠇߚ‫☸ߥ߁ࠃߩߎޕ‬ᓘಽᢔߦ⿠࿃ߔࠆࠟ࡜ࠬൻߪࠦࡠࠗ࠼ಽᢔ♽ߦߟ޿ߡ⹦ߒߊ⺞ߴࠄࠇߡ߅ࠅ‫ߘޔ‬
ߎߢᓧࠄࠇߚ⍮⷗߇☳☸૕♽ߦኻߒߡ߽ㆡ↪น⢻߆ߤ߁߆ߣ޿߁ⷰὐ߆ࠄ⎇ⓥࠍⴕߞߚ‫ߡ޿ߟߦ⚦⹦ߦࠄߐߪߢ⴫⊒ᧄޕ‬
ႎ๔ߔࠆ‫ޕ‬
42
໤଻ࡄ‫ݪ‬ਫ਼ౣ‫ݪࡄܢ‬ٛ!
! ! ၾঊΑάϋࠏ͈໤ၑ!
ᣣᤨ㧦 ᐕ ᦬ ᣣ
᦬㨪 ᦬ ᣣ
᳓
ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᧄ㙚⻠⟵ቶ
ឭ᩺ઍ⴫⠪
ဈ੗ ᔀ ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴࡮⎇ⓥਥᐙ
ߘߩઁߩឭ᩺⠪
㜟ጊ ৻ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ࡮ᢎ᝼
Ꮉ ੳ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ࡮ᢎ᝼
᛼Ꮉ ᱜᲞ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ࡮ᢎ᝼
↰ਛ ⑲ᢙ ᧲੩Ꮏᬺᄢቇᄢቇ㒮ℂᎿቇ⎇ⓥ⑼࡮ᢎ᝼
㒶ጊ ᵗ ੩ㇺᄢቇᄢቇ㒮ℂቇ⎇ⓥ⑼࡮ഥᢎ᝼
㊂ሶࠬࡇࡦ♽ߩ⎇ⓥߪ‫ޔ‬㐳޿વ⛔ߦ߽ᡰ߃ࠄࠇߡ‫߽ߦߢ߹ࠇߎޔ‬ᄙߊߩᚑᨐࠍ޽ߍߡ߅ࠅ‫੹ޔ‬ᣣߢ߽ᣂߒ޿࠹࡯ࡑߩଏ
⛎Ḯߣߒߡ‫⎇ߥ߹ߑ߹ߐޔ‬ⓥಽ㊁࡮㗔ၞߩ⊒ዷߦ⽸₂ߔࠆᄢ߈ߥࠦࡒࡘ࠾࠹ࠖࠍᒻᚑߒߡ޿ࠆ‫ޔߒ߆ߒޕ‬㊂ሶࠬࡇࡦ♽ߩ
⎇ⓥ⠪ߪᣣᧄ‛ℂቇળߢ߽ⶄᢙߩ㗔ၞߦᷙ࿷ߒߡ޿ࠆߚ߼‫ో߆ߥ߆ߥޔ‬ຬ߇৻ၴߦળߒߡታ㛎࡮ℂ⺰ਔ㕙߆ࠄ⼏⺰ߔࠆᯏ
ળ߇ዋߥ޿‫ᦨޔߚ߹ޕ‬ㄭߪᄙߊߩ⎇ⓥ⠪߇┹੎⊛ᄖㇱ⾗㊄ࡊࡠࠫࠚࠢ࠻ߩࡔࡦࡃ࡯ߣߒߡᵴべߒ‫ࠍࠖ࠹࠾ࡘࡒࠦޔ‬ᵴᕈൻ
ߔࠆ৻ᣇ‫ޔ‬⍴ᦼ⊛ߦᚑᨐߩ޽߇ࠆ⎇ⓥ߇஍㊀ߐࠇߡ‫ޔ‬㐳ᦼ⊛ߥⷞ㊁ߦ┙ߟ⎇ⓥ߇シⷞߐࠇࠆߚ߼‫⃻ޔ‬࿷ߩࠕࠢ࠹ࠖࡆ࠹ࠖ
߇዁᧪ߦࠊߚߞߡᜬ⛯ߢ߈ࠆ߆ߤ߁߆‫⇼ޔ‬໧ⷞߔࠆჿ߽޽ࠆ‫ޔߢߎߘޕ‬⍴ᦼ⊛ߥᚑᨐ߿⎇ⓥ⾗㊄ߩ໧㗴ࠍᐲᄖⷞߒߡ‫ޔ‬㐳
ᦼ⊛ⷞ㊁ߦ┙ߜ‫ޔ‬ታ㛎࡮ℂ⺰ਔ㕙ߦࠊߚߞߡᣂߒ޿࠹࡯ࡑࠍ⊒ជߒߚࠅ‫ޔ‬዁᧪⊛ߥ⎇ⓥߩᣇะᕈࠍត⚝ߔࠆߎߣࠍ⋡⊛ߣ
ߒߡ‫⎇ᧄޔ‬ⓥળߪ㐿௅ߐࠇߚ‫␠ߩઁߪࠖ࠹࠾ࡘࡒࠦߩߎޔߚ߹ޕ‬ળߣห᭽ߦ਎ઍ੤ઍߩᤨᦼߦߐߒ߆߆ߞߡ߅ࠅ‫ߩߎޔ‬㊀
ⷐߥォᯏࠍਸ਼ࠅಾߞߡ੹ᓟ߽⊒ዷߒ⛯ߌࠆߚ߼ߦ‫⧯ߣࡦ࡜࠹ࡌޔ‬ᚻߩ㑆ߩ਎ઍࠍ⿥߃ߚࠦࡒࡘ࠾ࠤ࡯࡚ࠪࡦߩ႐ࠍ૞ࠆߎ
ߣ߽‫⎇ߩߎޔ‬ⓥળߩ㊀ⷐߥ⋡⊛ߢ޽ߞߚ‫⿰ߥ߁ࠃߩߎޕ‬ᣦࠍᄙߊߩ⎇ⓥ⠪ߦ⾥หߒߡ޿ߚߛ޿ߚ⚿ᨐ‫⥸৻ޔ‬ડᬺ߆ࠄߩ↳
ㄟߺ߽฽߻ 100 ฬㄭ޿ෳട⊓㍳߇޽ࠅ‫⎇ޔ‬ⓥળೋᣣߦߪ 120 ฬࠍ⿥߃ࠆෳട⠪߇޽ߞߚ‫ޕ‬㊂ሶࠬࡇࡦ♽ߩࠦࡒࡘ࠾࠹ࠖ
ߩ⃻࿷ߩࠕࠢ࠹ࠖࡆ࠹ࠖߩ㜞ߐࠍ❥ᩕߒߡ‫ޔ‬3 ᣣ㑆ߢߩߴ 300 ੱࠍ⿥߃ࠆෳട⠪߇޽ࠅ‫‛ޔ‬ᕈ⎇⻠⟵ቶ߇ㅪᣣၒ߹ࠆᄢ⋓
ᴫߢ޽ߞߚ‫ޕ‬
ᧄ⎇ⓥળߪ‫⹤ޔ‬㗴ࠍឭଏߔࠆ᜗ᓙ⻠Ṷ⚂ 30 ઙ‫⻠⥸৻ޔ‬Ṷ⚂ 20 ઙ‫⧯ޔ‬ᚻࠍਛᔃߣߔࠆࡐࠬ࠲࡯࠮࠶࡚ࠪࡦ⚂ 40 ઙ߆ࠄ
ߥࠅ‫ޔ‬ขࠅ਄ߍߚ࠹࡯ࡑߪ‫⏛ࡁ࠽ޔ‬ᕈ࡮ࠞࠗ࡜࡞⏛ᕈ࡮ࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦ♽࡮ࠬࡇࡦᶧ૕࡮ࡏ࡯࠭ࠕࠗࡦࠪࡘ࠲ࠗࡦ
ಝ❗࡮ࡂ࡞࠺ࡦ♽ߥߤᄙጘߦᷰࠆ‫ޕ‬ฦ⻠Ṷᓟߩ࠺ࠖࠬࠞ࠶࡚ࠪࡦࠍ㊀ⷞߔࠆࠕ࠽࠙ࡦࠬࠍᔀᐩߒߚߎߣ߆ࠄ‫ޔ‬㕖Ᏹߦᵴ⊒
ߥ⸛⺰߇ዷ㐿ߐࠇ‫⎇ޔ‬ⓥળᓟඨߢߪ⧯ᚻ߽Ⓧᭂ⊛ߦ⼏⺰ߦෳടߔࠆࠃ߁ߦߥࠅ‫⧯ޔ‬ᚻߩࠦࡔࡦ࠹࡯࠲࡯⢒ᚑߦ߽ᓎ┙ߞߚ
ߣᕁࠊࠇࠆ‫ᦨޔߚ߹ޕ‬ㄭߩ⊒ዷ⪺ߒ޿࠽ࡁ⏛ᕈߩ࠮࠶࡚ࠪࡦߢߪ‫ޔ‬ታ㛎⎇ⓥ⠪߆ࠄ‫ߣߞ߽ޔ‬᣿⏕ߥ㊂ሶലᨐࠍ੍᷹ߒᬌ⸽
ታ㛎ࠍឭ᩺ߔࠆࠃ߁‫ޔ‬ℂ⺰⎇ⓥ⠪ߦⷐᦸ߇಴ߐࠇ‫ޔ‬዁᧪ߩ⺖㗴ߣߒߡឭ⿠ߐࠇߚ‫ࡦࡇࠬߦࠄߐޕ‬ᶧ૕߿ࡏ࡯࠭ࠕࠗࡦ
ࠪࡘ࠲ࠗࡦಝ❗ߥߤߩࠛࠠ࠱࠹ࠖ࠶ࠢߥ⃻⽎ࠍ␜ߔᣂ‛⾰ࠍวᚑߔࠆߎߣߩ㔍ߒߐ߆ࠄ‫ޔ‬ታ㛎࡮ℂ⺰ਔ㕙ߩ࠾࡯࠭ߦߟ޿
ߡ߽ߞߣ㗫❥ߦᖱႎ੤឵ࠍߔࠆ႐ߣߒߡ‫⎇ߥ߁ࠃߩߎޔ‬ⓥળࠍ㐿ߊߛߌߢߥߊ‫ߚߞ૶ࠍ࠻࠶ࡀ࡯࠲ࡦࠗޔ‬ᖱႎ੤឵ࡀ࠶࠻
ࡢ࡯ࠢߩ᭴▽߇ᔅⷐߣߩ⷗⸃߽಴ߐࠇߚ‫ߩߎޕ‬ὐߦߟ޿ߡߪ‫ޔ‬㊂ሶࠬࡇࡦ♽ߩࠦࡒࡘ࠾࠹ࠖߩࡎ࡯ࡓࡍ࡯ࠫ૞ᚑࠍ⃻࿷ᬌ
⸛ਛߢ‫ޔ‬ᣧᕆߦታ⃻ߔࠆᔅⷐ߇޽ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
ᧄ⎇ⓥળߩ߭ߣߟߩ⋡ᮡߢ޽ߞߚ㐳ᦼ⊛ߥⷞ㊁߆ࠄߩ዁᧪ዷᦸ߇㆐ᚑߐࠇߚ߆ߤ߁߆ߪ‫ޔ‬2‫ޔ‬3 ᐕᓟߩ⍴ᦼ⊛ߥᚑᨐ߆
ࠄផߒ㊂ࠆߎߣߪߢ߈ߥ޿߇‫ߩߎޔ‬ળᦼਛߦߺࠄࠇߚᵴ⊒ߥ࠺ࠖࠬࠞ࠶࡚ࠪࡦ߆ࠄ‫⿠ࠍ⺰⼏ߩߢߎߎޔ‬ὐߣߒߡ‫ޔ‬㆙޿዁
᧪ߦ㊀ⷐߥࡉ࡟࡯ࠢࠬ࡞࡯ࠍ߽ߚࠄߔᄢ⊒⷗ߦߟߥ߇ࠆ߽ߩߣᦼᓙߒߚ޿‫ߚߞ޽ߢ⊛⋡ߩߟߣ߭߁߽ޔߚ߹ޕ‬਎ઍࠍ⿥߃
ߚࠦࡒࡘ࠾ࠤ࡯࡚ࠪࡦߦߟ޿ߡߪ‫ޔ‬70 ฬએ਄߇ෳടߒߚᙣⷫળ߿ᵴ⊒ߥࡐࠬ࠲࡯࠮࠶࡚ࠪࡦߥߤߦࠃࠅ‫ޔ‬චಽߦ㆐ᚑߐ
ࠇߚ߽ߩߣାߓࠆ‫⎇ߩߎޕ‬ⓥળߢᚑ㐳ߒߚ⧯ᚻߩਛ߆ࠄ‫ޔ‬2‫ޔ‬3 ᐕᓟߦߐࠄߦࠣ࡟࡯࠼ࠕ࠶ࡊߒߚ⎇ⓥળࠍ㐿௅ߒ‫ޔ‬㊂ሶ
ࠬࡇࡦ♽ߩࠦࡒࡘ࠾࠹ࠖࠍᵴᕈൻߔࠆ᦭ജߥ⎇ⓥ⠪߇ᄙᢙ಴ߡߊࠆߎߣࠍ㗿ߞߡ޿ࠆ‫ޕ‬
43
ࡊ ࡠ ࠣ ࡜ ࡓ
22 ࠮ 38 ඾)࠮*!
13:00 㐿ળ ဈ੗ ᔀ㧔ේሶജᯏ᭴㧕
ᐳ㐳㧦㜟ጊ
৻㧔᧲ᄢ‛ᕈ⎇㧕
13:10-13:35 ㊁ዥ ᶈਯ㧔᧲ർᄢ㊄⎇㧕
‫ࡁ࠽ޟ‬ಽሶ⏛ᕈ⎇ⓥߩേะߣน⢻ᕈ‫ޠ‬
13:35-14:00 ችਅ ♖ੑ㧔᧲ᄢℂ㧕
‫ޟ‬නಽሶ⏛ᕈ૕ߩ㊂ሶ࠳ࠗ࠽ࡒ࠶ࠢࠬߣࠛࡀ࡞ࠡ࡯ࠡࡖ࠶ࡊ᭴ㅧ‫ޠ‬
14:00-14:20 ጯᩮ 㗅৻㇢㧔਻ᎿᄢᎿ㧕
‫⚿ޟ‬᥏ߣ⏛ᕈߩ chirality㧦ℂ⺰‫ޠ‬
14:20-14:40 ੗਄ స਽㧔ᐢፉᄢℂ㧕
‫⚿ޟ‬᥏ߣ⏛ᕈߩ chirality㧦ಽሶᕈൻว‛‫ޠ‬
14:40-15:00 ⑺శ
⚐㧔㕍ቇᄢℂᎿ㧕
‫⚿ޟ‬᥏ߣ⏛ᕈߩ chirality㧦ήᯏൻว‛‫ޠ‬
ᐳ㐳㧦↰ਛ ⑲ᢙ㧔᧲Ꮏᄢ㒮ℂᎿ㧕
15:20-15:45 ਄↰
ኡ㧔᧲ᄢ‛ᕈ⎇㧕
‫㉄࡞ࡀࡇࠬޟ‬ൻ‛ߣ㔚⩄࡮゠㆏࡮ࠬࡇࡦ࡮ᩰሶ⚿ว⃻⽎‫ޠ‬
15:45-16:10 ೨Ꮉ
ⷡ㧔੩ᄢੱⅣ㧕
‫ ࡦࡇࠬޟ‬1/2 ㊂ሶ߆ߏ߼ᩰሶ⏛ᕈ૕ߩࡈ࡜ࠬ࠻࡟࡯࠻⏛ᕈ‫ޠ‬
16:10-16:35 ✂ઍ ⧐᳃㧔੩ᄢℂ㧕
‫ޟ‬ᱜᣇᩰሶࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦ♽ߩታ㛎‫ޠ‬
16:35-17:00 ᩶੗
ീ㧔ℂ⎇㧕
‫ޟ‬ᒝ⏛ᕈំࠄ߉ߩᒝ޿ࡈ࡜ࠬ࠻࡟࡯࠻⏛ᕈ૕ߦ߅ߌࠆ㊂ሶࠬࡇࡦᶧ૕‫ޠ‬
17:00-17:25 㡆ᶏ ᐽ㓶㧔᧲ᄢ‛ᕈ⎇㧕
‫ޟ‬ᒝ⏛႐ߦࠃࠆ㊂ሶࠬࡇࡦߩ⎇ⓥ‫ޠ‬
ࡐࠬ࠲࡯ࡊ࡟ࡆࡘ࡯ᐳ㐳㧦ᚭႦ ࿻੺㧔੩ᄢၮ⎇㧕
17:30-19:00 ࡐࠬ࠲࡯ࡊ࡟ࡆࡘ࡯A㧔ฦ 2 ಽ㧕㧗ࡐࠬ࠲࡯࠮࠶࡚ࠪࡦ
22 ࠮ 39 ඾)‫غ‬ȫ!
ᐳ㐳㧦೨Ꮉ
ⷡ㧔੩ᄢੱⅣ㧕
9:00-9:15 ጊᧄ ᣽ม㧔ർᄢℂ㧕
‫ޟ‬1 ᰴరߢⷰ߃ߚ⿥࡜ࡑࡦᩭࠬࡇࡦ㧙ᩰሶ✭๺ㆊ⒟‫ޠ‬
9:15-9:30 ฎᎹ ⵨ᰴ㧔ർᄢℂ㧕
‫࡞࡯ࠤࠬࡁ࠽ޟ‬ಽሶ⏛ᕈ૕ߩ NMR‫ޠ‬
9:30-9:45 ኹየ
ᵘ㧔ାᎺᄢℂ㧕
‫ޟ‬㊂ሶࠬࡇࡦ࡮ࠢ࡜ࠬ࠲࡯ߦ߅ߌࠆࠬࡇࡦ Jahn-Teller ലᨐ‫ޠ‬
9:45-10:10 ⋉↰ 㓉༹㧔ᮮᵿᏒᄢ㧕
‫ޟ‬㊂ሶࠬࡇࡦ࠳ࠗࡑ࡯♽ߩࠬࡇࡦ࡮࠳ࠗ࠽ࡒࠢࠬ‫ޠ‬
10:10-10:25 ⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕
‫ޟ‬ᣂⷙࡈ࠶⚛ൻว‛ߩ૞⵾ߣ੹ᓟߩ⎇ⓥᣇ㊎‫ޠ‬
10:25-10:40 ⍫ࠤፒ స㚍㧔℄⃿ᄢℂ㧕
‫ޟ‬ᣂᄸવዉᯏ᭴‫ޟ‬ᣏߔࠆ 2 ㊂૕ߩવዉ‫ޠޠ‬
44
ᐳ㐳㧦㜞ᯅ
ኪ㧔᧲ᄢ‛ᕈ⎇㧕
11:00-11:25 ችේ
ᘕ㧔㕍ቇᄢℂᎿ㧕
‫ޟ‬2 ᰴర㊂ሶࠬࡇࡦ♽ SrCu2(BO3)2, Cs2CuBr4 ߩ⏛ൻࡊ࡜࠻࡯‫ޠ‬
11:25-11:50 ๺᳇
೰㧔᧲ᄢ‛ᕈ⎇㧕
‫ޟ‬SrCu2(BO3)2 ߦ߅ߌࠆᣂߒ޿㜞࿶⋧‫ޠ‬
11:50-12:05 ᚭႦ ࿻੺㧔੩ᄢၮ⎇㧕
‫ޟ‬Contracter-renormalization approach to unconventional phases in frustrated magnets‫ޠ‬
12:05-12:20 ടୖ੗ ๺ਭ㧔ේሶജᯏ᭴㧕
‫ޟ‬Ⓧጀਃⷺᩰሶ‛⾰ LuFe2O4 ߩ⏛᳇⒎ᐨㆊ⒟‫ޠ‬
ᐳ㐳㧦✂ઍ ⧐᳃㧔੩ᄢℂ㧕
13:10-13:35 㣮㊁↰ ৻ม㧔᧲ᄢᎿ㧕
‫ޟ‬ਃⷺᩰሶ᦭ᯏࡕ࠶࠻⛘✼૕ߦ߅ߌࠆࠬࡇࡦᶧ૕ߣ⿥વዉ‫ޠ‬
13:35-14:00 ධㇱ 㓶੫㧔੩ᄢℂ㧕
‫ޟ‬ੑᰴరਃⷺᩰሶ෻ᒝ⏛ᕈ૕ NiGa2S4 ߦ߅ߌࠆࠬࡇࡦߩή⒎ᐨߥ㊂ሶ⁁ᘒ‫ޠ‬
14:00-14:25 Ᏹᰴ ብ৻㧔᧲ᄢ‛ᕈ⎇㧕
‫ޟ‬ਃⷺᩰሶࠬࡇࡦ♽ߩℂ⺰㧙 ”ࠬࡇࡦᶧ૕”ߣࠬࡇࡦࡀࡑ࠹ࠖ࠶ࠢ⋧‫ޠ‬
14:25-14:40 ᳓ፒ 㜞ᶈ㧔ኾୃᄢ㧕
‫ޟ‬2 ᰴరߩࡈ࡜ࠬ࠻࡟࡯࠻ߒߚࡂࡃ࡯࠼ᮨဳߩ⋧࿑ߦߟ޿ߡ‫ޠ‬
14:40-15:05 Ꮉ᧛
శ㧔㒋ᄢℂ㧕
‫ࠍࠖ࠹࡝࡜ࠗࠞޟ‬ᅤ૗ߦ᷹ⷰߔࠆ߆㧫‫ޠ‬
ᐳ㐳㧦ဈ੗
ᔀ㧔ේሶജᯏ᭴㧕
15:25-15:50 ↰ਛ ⑲ᢙ㧔᧲Ꮏᄢ㒮ℂᎿ㧕
‫ߩ♽࡯ࡑࠗ࠳ࡦࡇࠬޟ‬㊂ሶ⋧ォ⒖ߣ⏛᳇ബ⿠ߩታ㛎‫ޠ‬
15:50-16:15 ᧻ᧄ ᱜ⨃㧔㕒ጟᄢℂ㧕
‫ߩ♽࡯ࡑࠗ࠳ࡦࡇࠬޟ‬㊂ሶ⋧ォ⒖ߣ⏛᳇ബ⿠ߩℂ⺰‫ޠ‬
16:15-16:40 ㋈ᧁ 㓉ผ㧔᧲ᄢ‛ᕈ⎇㧕
‫ޟ‬3 ᰴరᩰሶ♽ߦ߅ߌࠆ⿥ᵹേ࿕૕⁁ᘒߩត⚝‫ޠ‬
ࡐࠬ࠲࡯ࡊ࡟ࡆࡘ࡯ᐳ㐳㧦⮮੗
⵨㧔⑔੗ᄢᎿ㧕
16:40-18:10 ࡐࠬ࠲࡯ࡊ࡟ࡆࡘ࡯B
ฦ 2 ಽ㧗ࡐࠬ࠲࡯࠮࠶࡚ࠪࡦ
18:10-20:00 ᙣⷫળ㧔‛ᕈ⎇ 6 㓏࡜࠙ࡦࠫ㧕
22 ࠮ 3: ඾)କȫ!
ᐳ㐳㧦ᄥ↰
ੳ㧔␹ᚭᄢℂ㧕
9:00-9:25 ⩵ᳰ ᒾశ㧔⑔੗ᄢᎿ㧕
‫࠼ࡦࡕࡗࠗ࠳ޟ‬㎮ൻว‛ࠕ࠭࡜ࠗ࠻ߩ⏛ᕈ㧔ታ㛎㧕‫ޠ‬
9:25-9:50 ጟᧄ ᷡ⟤㧔᧲Ꮏᄢ㒮ℂᎿ㧕
‫ࡦࡇࠬဳ࠼ࡦࡕࡗࠗ࠳ޟ‬㎮ߩ⏛᳇⊛ᕈ⾰ߩℂ⺰֣ᩰሶߩࡈࠚ࡝ᕈߣࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦ‫ޠ‬
9:50-10:05 㘧↰ ๺↵㧔ၯ₹ᄢℂ㧕
‫ߣࡦ࡚ࠪ࡯࡟࠻ࠬ࡜ࡈޟ‬㊂ሶᕈ߆ࠄ↢߹ࠇࠆࡈࠚ࡝⏛ᕈ‫ޠ‬
10:05-10:20 ೑ᩮᎹ ቁ㧔⑔੗Ꮏᄢᯏ᪾㧕
‫ޟ‬S=2 ࠬࡇࡦߣ S=1 ࠬࡇࡦ߇෻ᒝ⏛ᕈ⊛ߦ੤ઍߒߚ⇣ᣇ⊛ 1 ᰴర㎮ߩ㔖⏛႐ၮᐩ⁁ᘒ‫ޠ‬
ᐳ㐳㧦Ꮉፉ ⋥ノ㧔᧲ᄢ‛ᕈ⎇㧕
10:40-10:55 ⢫
ᥙ㧔‛᧚ᯏ᭴㧕
‫ޟ‬ᣂᄸ㌃㉄ൻ‛ߩ゠㆏⒎ᐨߣ⏛ᕈߩℂ⺰⸃ᨆ߅ࠃ߮‛⾰⸳⸘‫ޠ‬
45
10:55-11:10 ᩉᴛ
ቁ㧔↥✚⎇㧕
‫ޟ‬2 ᰴర㊂ሶ෻ᒝ⏛ᕈ૕ߦ߅ߌࠆࠗࡦࠬ࠲ࡦ࠻ࡦ‫ޠ‬
11:10-11:35 ቟↰ ජኼ㧔㕍ቇᄢℂᎿ㧕
‫ޟ‬ਇ⚐‛⺃⿠෻ᒝ⏛ᕈ⒎ᐨ㧦ࡏࡦ࠼Ꮧ㉼♽ߦ߅ߌࠆ┹วߔࠆੑߟߩ᦭ല⋧੕૞↪‫ޠ‬
11:35-11:50 ᅏ⷏ Ꮑ৻㧔ᣂẟᄢ⥄ὼ㧕
‫ޟ‬Wilson ဳታⓨ㑆ߊࠅߎߺ⟲ߣ㊂ሶࠬࡇࡦ㎮ߩૐࠛࡀ࡞ࠡ࡯ബ⿠ࠬࡍࠢ࠻࡞‫ޠ‬
11:50-12:15 ဈ੗
ᔀ㧔ේሶജᯏ᭴㧕
‫ߩࡉ࡯ࡘ࠴ࡦࡇࠬޟ‬㊂ሶ⋧ォ⒖‫ޠ‬
ᐳ㐳㧦೑ᩮᎹ ቁ㧔⑔੗Ꮏᄢᯏ᪾㧕
13:00-13:25 ⪤ේ ᡽ᐘ㧔㒋ᄢᭂ㒢࠮ࡦ࠲࡯㧕
‫‛ߩ♽ࡦ࠺࡞ࡂޟ‬ℂߣᱷߐࠇߚ⺖㗴㧔ታ㛎㧕‫ޠ‬
13:25-13:50 ㊁᧛ ᷡ⧷㧔਻Ꮊᄢℂ㧕
‫‛ߩ♽ࡦ࠺࡞ࡂޟ‬ℂߣᱷߐࠇߚ⺖㗴㧔ℂ⺰㧕‫ޠ‬
13:50-14:15 ᧻የ
᥏㧔᧲ᄢ‛ᕈ⎇㧕
‫ࡁ࠽ޟ‬ⓨ㑆ߦ㈩೉ߒߚ㉄⚛ಽሶ㎮ߩᒝ⏛႐⏛ൻㆊ⒟‫ޠ‬
14:15-14:30 㜞㊁ ஜ৻㧔⼾↰Ꮏᄢ㧕
‫ޟ‬஥㎮ߩ޽ࠆ㊂ሶࠬࡇࡦ㎮ߩၮᐩ⁁ᘒ‫ޠ‬
14:30-14:45 ↰ਛ ⑺ᐢ㧔‛᧚ᯏ᭴㧕
‫ޟ‬㜞ᰴరߩ AKLT ឬ௝ߣߘߩ႐ߩℂ⺰‫ޠ‬
ᐳ㐳㧦Ꮉ
ੳ㧔᧲ᄢ‛ᕈ⎇㧕
15:05-15:30 ᄥ↰
ੳ㧔␹ᚭᄢℂ㧕
‫ޟ‬㊂ሶࠬࡇࡦ♽ߩ ESR ߦࠃࠆ⎇ⓥ‫ޠ‬
15:30-15:45 Ꮉ⢆ 㓉ⴕ㧔ℂ⎇㧕
‫ޟ‬5 ᧄ⿷ࠬࡇࡦ᪽ሶᩰሶ♽ La8Cu7O19 ߣࡂ࡞࠺ࡦࠡࡖ࠶ࡊ♽ Y2BaNiO5 ߦ߅ߌࠆࠬࡇࡦߦࠃࠆᾲવዉ‫ޠ‬
15:45-16:00 శ⮮ ⺈ᄥ㇢㧔⑔੗ᄢ㆙⿒࠮ࡦ࠲࡯㧕
‫࡯࠳࡜ࡦࡇࠬޟ‬ൻว‛(CPA)2CuBr4 ߩ㜞๟ᵄ ESR ᷹ቯ‫ޠ‬
16:00-16:15 ⮮੗
⵨㧔⑔੗ᄢ㆙⿒࠮ࡦ࠲࡯㧕
‫࡯࠳࡜ࡦࡇࠬޟ‬ൻว‛(CPA)2CuBr4 ߩᩭ⏛᳇౒㡆‫ޠ‬
16:15-16:30 ᒁේ ବ຦㧔ർᄢℂ㧕
‫ޟ‬᜛ᒛߐࠇߚ 4 ૕⋧੕૞↪ࠍ߽ߟ 2 ᧄ㎮᪽ሶࠬࡇࡦ♽ߦ߅ߌࠆ෺ኻᄌ឵‫ޠ‬
16:30-16:45 ᧻↰ 㓷᣽㧔ේሶജᯏ᭴㧕
‫ޟ‬஍ᭂਛᕈሶࠍ↪޿ߚ TbMnO3 ߩ⏛᳇᭴ㅧߦ㑐ߔࠆ⎇ⓥ‫ޠ‬
16:45-17:00 ዊ㊁↰ 㓷㊀㧔╳ᵄᄢᢙℂ㧕
‫㉄ࡓ࠙ࠫ࠽ࡃޟ‬ൻ‛♽ߦ߅ߌࠆ㊂ሶࠬࡇࡦലᨐ‫ޠ‬
ࡐࠬ࠲࡯࠮࠶࡚ࠪࡦ
⎇ⓥળᦼ㑆ਛ㧔3 ᣣ㑆㧕ឝ␜‫ޕ‬ฦ 2 ಽ㑆ߩࡊ࡟ࡆࡘ࡯࠻࡯ࠢ޽ࠅ‫ޕ‬
ࡐࠬ࠲࡯ࡊ࡟ࡆࡘ࡯㧭
˝ˍ㧦ᧁ᧛ ዏᰴ㇢㧔㒋ᄢᭂ㒢࠮ࡦ࠲࡯㧕
‫ޟ‬ᡆ৻ᰴరࠦࡃ࡞࠻ൻว‛ BaCo2V2O8 ߩᒝ⏛႐⏛ᕈ‫ޠ‬
˝ˎ㧦ᩊፒ
ᓃ㧔᧲ᄢᎿ㧕
‫ޟ‬ᡆ 1 ᰴర෻ᒝ⏛ᕈࡂࠗ࠯ࡦࡌ࡞ࠣᮨဳߦ߅ߌࠆ㎮㑆ᐔဋ႐ㄭૃߣߘߩᡷ⦟‫ޠ‬
˝ˏ㧦ㄞᧄ ศᑝ㧔੩ᄢℂ㧕
‫ޟ‬ੑᰴరᱜᣇᩰሶ⏛ᕈ૕(CuBr)Sr2Nb3O10 ߩ⏛ᕈ‫ޠ‬
˝ː㧦⮮↰ ᢅਯ㧔⑔੗ᄢ㆙⿒࠮ࡦ࠲࡯㧕
‫ޟ‬CuB2O4 ߩ㜞๟ᵄ ESR‫ޠ‬
46
˝ˑ㧦᧛ፉ 㓉ᶈ㧔਻Ꮊᄢℂ㧕
‫ޟ‬㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆᢛว㕖ᢛวㆫ⒖‫ޠ‬
˝˒㧦⮮↰
ᷤ㧔ฬฎደᄢℂ㧕
‫ޟ‬Ⅳ⁁࠴ࠕࠫ࡞࡜ࠫࠞ࡞⚿᥏ߦ߅ߌࠆࠬࡇࡦࠡࡖ࠶ࡊ⁁ᘒ‫ޠ‬
˝˓㧦૒⮮ ᱜኡ㧔ේሶജᯏ᭴㧕
‫⏛ޟ‬႐ਛߩࠬࡇࡦ࠴ࡘ࡯ࡉߦ߅ߌࠆࡌࠢ࠻࡞ࠞࠗ࡜࡞⒎ᐨߣᦺ᳗࡜࠶࠹ࠖࡦࠫࡖ࡯ᶧ૕ߩ౒ሽ‫ޠ‬
˝˔㧦ችፒ
ኡ㧔ጟጊᄢℂ㧕
‫⇣ޟ‬ᣇ⊛ S=2 ࠬࡇࡦ㎮ߦ߅ߌࠆ 1/2 ⏛ൻࡊ࡜࠻࡯‫ޠ‬
˝˕㧦የฎ ᣽ፏ㧔ጟጊᄢℂ㧕
‫৻ߣ࠻ࡦࡔ࡞ࠣࡦ࠲ࡦࠛޟ‬ᰴర㊂ሶࠬࡇࡦ♽ߩၮᐩ⁁ᘒ‫ޠ‬
˝21㧦ᨰᧁ 㓉ᚑ㧔㒋ᄢᭂ㒢࠮ࡦ࠲࡯㧕
‫⏛ࡦ࠺࡞ࡂޟ‬ᕈ૕ NDMAP ߩ⏛᳇ബ⿠ߩⷺᐲଐሽᕈ‫ޠ‬
˝22㧦ᷡ᳓ ஜ๋㧔ฬฎደᄢℂ㧕
‫ޟ‬ᡆ 1 ᰴరࡂࠗ࠯ࡦࡌ࡞ࠣ⏛ᕈ૕ β-BBDTA࡮GaBr4‫ޠ‬
˝23㧦቟↰ ᵗ␭㧔⑔੗ᄢᎿ㧕
‫ޟ‬CuB2O4 ߩㅙᰴ⋧ォ⒖ߣ⏛᳇⋧࿑‫ޠ‬
˝24㧦㜞ᯅ ᱜౖ㧔ᄢ㒋Ꮢᄢ㧕
‫ޟ‬ฎౖ⊛ߥᩰሶߩ⥄↱ᐲࠍ฽߻㊂ሶࠬࡇࡦ♽ߩ㊂ሶࡕࡦ࠹ࠞ࡞ࡠࠪࡒࡘ࡟࡯࡚ࠪࡦ‫ޠ‬
˝25㧦ᄢਭ଻ ᤯㧔␹ᚭᄢℂ㧕
‫ޟ‬S=1 ࠬࡇࡦ࠳ࠗࡑ࡯♽ Ba3Mn2O8 ߩ㈩ะ⹜ᢱߩᒝ⏛႐ ESR‫ޠ‬
˝26㧦⮮Ỉ ⌀჻㧔␹ᚭᄢℂ㧕
‫ޟ‬S=1/2 ᡆ৻ᰴర෻ᒝ⏛ᕈ૕ Cu2Cl4࡮H8C4SO2 ߩ⏛ᕈ⎇ⓥ‫ޠ‬
˝27㧦␉ㇱ ᱜᒾ㧔᧲ᄢ‛ᕈ⎇㧕
‫ޟ‬S=1/2 ᡆ 1 ᰴర⏛ᕈ૕ NaTiSi2O6 ߩᣂᄸߥ⋧ォ⒖‫ޠ‬
˝28㧦ᄢේ
Ả㧔ർᄢℂ㧕
‫ޟ‬㌃ 3 ㊂૕ࡈࠚ࡝⏛ᕈ㎮ߩ⏛᳇ബ⿠‫ޠ‬
˝29㧦ዊự ⧐మ㧔᧲Ꮏᄢᔕ↪࠮࡜ࡒࠢࠬ⎇㧕
‫ޟ‬K11H[(VO)3(SbW9O33)2]࡮27H2O ߣ K12[(VO)3(BiW9O33)2]࡮29H2O ߩᭂૐ᷷‫ޔ‬㜞⏛႐ਅߢߩᾲኈ㊂‫ޠ‬
ࡐࠬ࠲࡯ࡊ࡟ࡆࡘ࡯B
˞ˍ㧦ጊญ
᣿㧔᧲ᄢ‛ᕈ⎇㧕
‫࡞࡯ࠤࠬࡁ࠽ޟ‬නಽሶ⏛⍹ߩૐ᷷⏛᳇᷹ቯ‫ޠ‬
˞ˎ㧦ਛ᧛ ␭৻㧔᧲ᄢ↢↥⎇㧕
‫⚛ޟ‬ബ⿠ߩಽᢔ㑐ଥߩ㔖ὐߣ⋧㑐㐳‫ޠ‬
˞ˏ㧦⢀੗ ᢘ๋㧔᧲ᄢℂ㧕
‫ޟ‬Distribution of non-trivial gapless points in single molecule magnets and dynamical driven systems‫ޠ‬
˞ː㧦ᐔ㊁ ፾᣿㧔᧲ᄢᎿ㧕
‫ޟ‬㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆ࠻ࡐࡠࠫࠞ࡞⒎ᐨߣࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ࠛࡦ࠻ࡠࡇ࡯‫ޠ‬
˞ˑ㧦ᰞ੗ ᢘඳ㧔␹ᚭᄢ⎇ⓥၮ⋚࠮㧕
‫ޟ‬1 GPa ߹ߢߩ㜞࿶ਅᒝ⏛႐ ESR ࠪࠬ࠹ࡓߩ㐿⊒ߣࠬࡇࡦࠡࡖ࠶ࡊ♽߳ߩᔕ↪‫ޠ‬
˞˒㧦ᄢਠ ⎇਽㧔᧲ᄢ‛ᕈ⎇㧕
‫⎫ဳࡦࡆ࡝ࠝޟ‬ൻ‛ Mn2AS4(A = Si, Ge) ߦ߅ߌࠆᄙ㊀⥃⇇⃻⽎‫ޠ‬
˞˓㧦᧻ਅ
℉㧔ฬฎደᄢℂ㧕
‫ޟ‬S=1 ࠞࠧࡔ Heisenberg ෻ᒝ⏛ᕈ૕ m-MPYNN࡮BF4 ߩ⏛ൻࡊ࡜࠻࡯‫ޠ‬
˞˔㧦㤥ᳯ ᥍ᒾ㧔਄ᥓᄢℂᎿ㧕
‫ࡦࡑ࡜ޟ‬ᢔੂߢ᷹ⷰߒߚ TlCoCl3 ߩ⏛᳇ബ⿠‫ޠ‬
˞˕㧦ᣣਅㇱ ᤩᐔ㧔਄ᥓᄢℂᎿ㧕
‫ޟ‬ACuCl3 ߩ࡜ࡑࡦᢔੂ‫ޠ‬
˞21㧦⷏㊁ ᤩᓼ㧔᧲ᄢ↢↥⎇㧕
‫⿥ޟ‬นⓍಽࠞࠗ࡜࡞ࡐ࠶࠷ᮨဳߩࠗࠫࡦࠣ⊛ࠬࡍࠢ࠻࡞ߣઃ㓐ߔࠆ XXZ ဳࠬࡇࡦ㎮ߩ L(sl2)ኻ⒓ᕈ‫ޠ‬
47
˞22㧦ựፒ ᥓᓆ㧔਄ᥓᄢℂᎿ㧕
‫৻ޟ‬ᰴర┹ว♽ Rb2Cu2Mo3O12 ߩ㜞࿶ਅ⏛ൻ᷹ቯ߅ࠃ߮⏛᳇Ყᾲߩ⏛႐ᄌൻ‫ޠ‬
˞23㧦ዊ㊁ ବ㓶㧔᧲Ꮏᄢ㒮ℂᎿ㧕
‫ޟ‬S=1/2 ࠬࡇࡦ࠳ࠗࡑ࡯♽ ND4CuCl3 ߩ⏛᳇ᒢᕈᢔੂ‫ޠ‬
˞24㧦᫪ፒ ᪸ᕺሶ㧔᧲Ꮏᄢ㒮ℂᎿ㧕
‫ޟ‬S 㧩 1/2 1 ᰴర෻ᒝ⏛ᕈ૕ KCuGaF6 ߦ߅ߌࠆ⏛႐⺃⿠ࠡࡖ࠶ࡊߣ⏛᳇ബ⿠‫ޠ‬
˞25㧦૗
㐳ᝄ㧔᧲ᄢ‛ᕈ⎇㧕
‫৻ޟ‬ᰴరࠬࡇࡦ♽ SrCo2V2O8 ߩ⏛᳇᜼േ‫ޠ‬
˞26㧦የᒻ ⺈ਯ㧔᧲ᄢ‛ᕈ⎇㧕
‫ޟ‬ੑᰴర⏛ᕈ૕(CuX)LaNb2O7㧔X=Cl, Br㧕ߩ NMR ᷹ቯ‫ޠ‬
˞27㧦᧻ේ ା৻㧔᧲ᄢ‛ᕈ⎇㧕
‫ޟ‬SrCu2(BO3)2 ߦ߅ߌࠆᣂߒ޿㜞⏛႐⋧‫ޠ‬
˞28㧦⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕
‫ⶄޟ‬วࡂ࡞࠺ࡦ㎮ IPA-CuCl3 ߩ g ୯ߩ 3 ᰴరนⷞൻ᷹ቯ‫ޠ‬
˞29㧦⩲ ⺈৻㇢㧔㒋ᄢᎿ㧕
‫ޟ‬1 ᰴర㊂ሶࠬࡇࡦ♽ߩ⏛႐ਛ NMR ✭๺₸‫ޠ‬
Oral 11/27/P01
΢Φ໦ঊঽ଻ࡄ‫͈ݪ‬൲࢜͂‫خ‬ෝ଻!
㊁ዥ ᶈਯ㧔᧲ർᄢ㊄⎇㧕
࠽ࡁಽሶ⏛ᕈ૕⎇ⓥߪ‫ޔ‬ೋᦼߩ㜞ࠬࡇࡦ⏛⍹ߩวᚑߣߘߩ‛ᕈត᳞ߪ৻Ბ⪭ߒᐞߟ߆ߩᣂߒ޿ᣇะᕈߦᴪߞߡ⎇ⓥߩዷ
㐿߇ߥߐࠇߡ޿ࠆ‫౏ᧄޕ‬Ṷߢߪᦨㄭߩ࠽ࡁಽሶ⏛ᕈ⎇ⓥߩᵹࠇߣน⢻ᕈࠍ᭎ⷰߔࠆ‫⎇ޕ‬ⓥߩേะߣߒߡߪ‫
ޔ‬1ᄙ᭽ߥ࠻
ࡐࡠࠫ࡯ߦ߅ߌࠆၮᐩ⁁ᘒߩ㊂ሶᕈߥࠄ߮ߦฎౖᕈ‫
ޔ‬2ࠦࡅ࡯࡟ࡦ࠻ߥࠬࡇࡦᠲ૞‫
ޔ‬3⏛᳇ࠢ࡜ࠬ࠲࡯ࠍㅪ⚿ߒߡ૞
ࠄࠇࠆ㜞ᰴ᭴ㅧߩ↢ᚑߣ‛ᕈ‫
ޔ‬4㜞ᰴ᭴ㅧߦ߅ߌࠆౝㇱ⥄↱ᐲ‫
ޔ‬5ℂᗐ⊛ߥૐᰴర᭴ㅧ↢ᚑ‫
ޔ‬6ࠨࠗ࠭ലᨐ‫ޔ‬
7ⶄวᯏ⢻ࠍ߽ߞߚ⏛ᕈ૕‫
ޔ‬8ࠬࡇࡦォ⒖ߩ೙ᓮ‫
ޔ‬9વዉᕈߩ೙ᓮ‫
ޔ‬10⿥᭴ㅧ૞ᚑߥߤ߇޽ߍࠄࠇࠆ‫‛ޔߦ․ޕ‬ℂ
⊛ߦᧂ㐿ᜏߩಽ㊁ߣߒߡ⥝๧ᷓ޿ߩߪ‫ޔ‬ታᤨ㑆ߩ‛ℂ⃻⽎ߦ㑐ㅪߒߚࠦࡅ࡯࡟ࡦ࠻ߥࠬࡇࡦᠲ૞ߣ3ᰴర⚿᥏ߢߪታ⃻ਇ
น⢻ߥ㜞ᰴߥ᭴ㅧࠍᜬߞߚ⏛ᕈ૕ߩታ⃻ߢ޽ࠅ‫ߦࠄࠇߘޔ‬㑐ߒߡᐞߟ߆ߩ⹜ߺ߽ႎ๔ߔࠆ‫ޕ‬
Oral 11/27/P02
ౙ໦ঊঽ଻ఘ͈ၾঊΘͼ΢ηΛ·Α͂΀ΥσΆȜΆλΛίࢹ௮!
ችਅ ♖ੑ㧔᧲ᄢℂ㧕
නಽሶ⏛ᕈ૕ߢߪ⏛႐ߩ᝹ᒁߦ㑐ߒߡ‫࡯ࠡ࡞ࡀࠛޔ‬Ḱ૏ߩ᭴ㅧࠍ෻ᤋߒߡ᭽‫ߥޘ‬േ⊛⏛ൻㆊ⒟ࠍ␜ߔ‫ߩߘޕ‬ᯏ᭴ߩ․ᓽ
߿ᢔㅺലᨐߥߤߦߟ޿ߡ⺞ߴࠆ‫ޔߚ߹ޕ‬㊂ሶ࠳ࠗ࠽ࡒ࠶ࠢࠬߢ㊀ⷐߥᓎഀࠍߔࠆࠛࡀ࡞ࠡ࡯ࠡࡖ࠶ࡊߩ⋧੕૞↪ଐሽᕈࠍ
⺞ߴ‫⿠ߩࡊ࠶ࡖࠡޔ‬Ḯ߿ߘߩࠦࡦ࠻ࡠ࡯࡞ߩᣇᴺߦߟ޿ߡ߽⠨ኤߔࠆ‫ߦࠄߐޕ‬ಽሶౝߩ⏛᳇⋧੕૞↪ߦࠃࠆࡈ࡜ࠬ࠻࡟࡯
࡚ࠪࡦߩߚ߼ߩᣂߒ޿࠲ࠗࡊߩၮᐩ⁁ᘒߦߟ޿ߡ߽⼏⺰ߔࠆ‫ޕ‬
Oral 11/27/P03
ࠫએ͂ঽ଻͈ chirality㧦ၑა
ጯᩮ 㗅৻㇢㧔਻ᎿᄢᎿ㧕
ࠞࠗ࡜࡝࠹ࠖࠍᎼࠆ⎇ⓥߪ‫ޔ‬18 ਎♿೨ඨߩࠕ࡜ࠧߦᆎ߹ߞߡࡄࠬ࠷࡯࡞߳ߣฃߌ⛮߇ࠇ‫⚿ޔ‬᥏࡮ಽሶߩࠞࠗ࡜࡝࠹ࠖ
ߦߟ޿ߡߩൻቇ⊛⎇ⓥߣߒߡㅴዷߒߡ߈ߚ‫ߩߘޕ‬ᓟߩಝ❗♽‛ℂ࡮‛⾰⑼ቇߩㅴዷߦࠃࠅ‫↱⥄ࠖ࠹࡝࡜ࠗࠞޔ‬ᐲ߇ᶧ᥏ߦ
߅ߌࠆಽሶ㈩ะ߿ᒝ⋧㑐㔚ሶ♽‫⋧ࡦࡇࠬࠆߌ߅ߦࠬ࡜ࠣࡦࡇࠬޔ‬㑐ߣ޿ߞߚ᭽‫ߥޘ‬ዪ㕙ߢ㊀ⷐߥᓎഀࠍᨐߚߔߎߣ߇᣿ࠄ
48
߆ߦߥߞߡ߈ߎߣߪ๟⍮ߩ੐ታߢ޽ࠆ‫⎇ࠖ࠹࡝࡜ࠗࠞޕ‬ⓥࠍൻቇߣ‛ℂߩႺ⇇✢਄ߦ૏⟎ߠߌࠆߣ‫ޟޔ‬᭴ㅧ⊛ࠞࠗ࡜࡝
࠹ࠖߣ⏛᳇⊛ࠞࠗ࡜࡝࠹ࠖ‫ޟޔޠ‬ಽሶࠬࠤ࡯࡞ߢߩࠞࠗ࡜࡝࠹ࠖߣ⚿᥏ࠬࠤ࡯࡞ߢߩࠞࠗ࡜࡝࠹ࠖ‫߁޿ߣޠ‬ኻᲧ߇ᶋ߈ᓂ
ࠅߦߥࠆ߇‫ߩࠄࠇߎޔ‬㑐ଥߦߪᧂ⸃᣿ߩㇱಽ߇ᄙ޿‫ߢߎߎޕ‬ขࠅ਄ߍࠆࠞࠗ࡜࡞⏛ᕈ૕ߣߪ‫࡞࡜ࠗࠞߢ࡞࡯ࠤࠬࡠࠢࡑޔ‬
ߥࠬࡇࡦ࠷ࠗࠬ࠻ࡄ࠲࡯ࡦ߇ᒻᚑߐࠇࠆߎߣߢ⚿᥏ో૕ߦࠊߚߞߡࠬࡇࡦࠞࠗ࡜࡝࠹ࠖ߇⊒⃻ߔࠆฎౖ⒎ᐨ⁁ᘒ
ࠦ࡟ࠬ
࠹࡝࠶ࠢᶧ᥏ߩࠬࡇࡦ ߢ޽ࠆ‫ޕ‬੗਄ࠄߦࠃߞߡวᚑߐࠇߚಽሶᕈࠞࠗ࡜࡞⏛ᕈ૕ߢߪ‫࡞࡜ࠗࠞޔ‬ಽሶࠍ㈩૏ሶߣߔࠆ
ߎߣߢ⚿᥏ߩ᭴ㅧ⊛ࠞࠗ࡜࡝࠹ࠖ߇⺃ዉߐࠇ‫߇ࠇߎޔ‬ᒁ߈㊄ߣߥߞߡ৻ᣇะߦᢛ೉ߒߚ DM ⋧੕૞↪
ࡈࠚࡠࠗ࠶ࠢߥ
DM ⋧੕૞↪߇⺃⿠ߐࠇࠆ‫ᦨޕ‬ㄭߩ‛ᕈ᷹ቯ
⏛ൻ᷹ቯ‫ޔ‬ਛᕈሶ࿁᛬‫ޔ‬X ✢⏛᳇ᢔੂ‫ޔ‬㕖✢ᒻ੤ᵹ⏛ൻߦࠃߞߡ‫৻ޔ‬ㅪ
ߩಽሶᕈࠞࠗ࡜࡞⏛ᕈ૕ߦ߅ߌࠆࠞࠗ࡜࡞⏛᳇᭴ㅧߩሽ࿷ߪ߶߷⏕ታߣߥߞߡ޿ࠆ[1]‫ᦨޔߚ߹ޕ‬ㄭ⑺శࠄߦࠃߞߡวᚑ
ߐࠇߚήᯏ♽ࠞࠗ࡜࡞⏛ᕈ૕ߦ߅޿ߡ߽‫ߩࡦ࡯࠲ࡄ࠻ࠬࠗ࠷ࡦࡇࠬߥ࡞࡜ࠗࠞޔ‬น⢻ᕈ߇ႎ๔ߐࠇߡ޿ࠆ[2]‫࡞࡜ࠗࠞޕ‬
⏛ᕈ૕߇᦭ߔࠆ㗼⪺ߥᕈ⾰ߣߒߡ‫ޔ‬㔚᳇⊛ࠞࠗ࡜࡝࠹ࠖߣ⏛᳇⊛ࠞࠗ࡜࡝࠹ࠖߩදᄼലᨐࠍ೑↪ߒߡࠬࡇࡦ࠷ࠗࠬ࠻ࡄ
࠲࡯ࡦ
ࠬࡇࡦ૏⋧ࠍ㔚႐࡮⏛႐ߦࠃߞߡ೙ᓮߢ߈ࠆὐ߇᜼ߍࠄࠇࠆ‫ޔ߫߃ߣߚޕ‬ၮᐩ⁁ᘒߢߩࠞࠗ࡜࡞⏛᳇᭴ㅧߦኻᔕ
ߔࠆ࠷ࠗࠬ࠻ࡄ࠲࡯ࡦߦ૏⋧ᄌ⺞ࠍട߃ߚ႐ว‫ࠍࠇߎޕࠆࠇߐ⿠⺃߇࠻ࡦ࡟ࠞࡦࡇࠬޔ‬㕖✢ᒻ੤ᵹ⏛ൻߦࠃߞߡᬌ಴ߢ߈
ࠆ‫⺃࠻ࡦ࡟ࠞࡦࡇࠬޕ‬ዉߪℂ⺰ߩࠥ࡯ࠫ᭴ㅧߣᷓߊ㑐ㅪߒߡ޿ࠆ‫⎇ߩࠄࠇߎޕ‬ⓥߦࠃߞߡ‫⏛࡞࡜ࠗࠞޔ‬ᕈ૕߇ၮ␆⊛ߥ‛
ᕈ⎇ⓥߣߒߡߩᷓߺߛߌߢߥߊ‫ߩߡߒߣࠬࠗࡃ࠺ࡦࡇࠬޔ‬น⢻ᕈࠍ⒁߼ߚ‛⾰⟲ߢ޽ࠆߎߣ߇ߪߞ߈ࠅߒߡ߈ߚ‫⻠ᧄޕ‬Ṷ
ߢߪએਅߩὐߦ⊛ࠍ⛉ࠅ‫⏛࡞࡜ࠗࠞޔ‬ᕈ⎇ⓥߩ⃻⁁ࠍℂ⺰ߩ┙႐߆ࠄႎ๔ߔࠆ‫ޕ‬A㧚⚿᥏ኻ⒓ᕈߣࠞࠗ࡜࡞⏛᳇᭴ㅧ
B㧚Ḱฎౖࡕ࠺࡞ߣࠞࠗ࡜࡞࠰࡝࠻ࡦᩰሶ C㧚ࠥ࡯ࠫ႐ߣࠬࡇࡦࠞ࡟ࡦ࠻ᧄ⎇ⓥߪ‫࠙
ࡈࠦ࠾࠴ࡉࠝ࡮࡯࠳ࡦࠨࠠ࡟ࠕޔ‬
࡜࡞Ꮊ┙ᄢ࡮⟤⮮ᱜ᮸
਻Ꮏᄢ࡮੗਄స਽
ᐢፉᄢ࡮⩵ᳰ⠹৻
㚂ㇺᄢ࡮㜞㒋ാテ
㕍ቇᄢ࡮⑺శ⚐
㕍ቇᄢฦ᳁ࠍਛ
ᔃߣߔࠆᄙᢙߩᣇ‫౒࡮⺰⼏ߩߣޘ‬ห⎇ⓥߦၮߠߊ߽ߩߢ޽ࠆ‫⾌⎇⑼ޔߚ߹ޕ‬ၮ⋚⎇ⓥ
㧭‫⚿ޡ‬᥏ߣ⏛ᕈߩ chirality‫߅ޢ‬
ࠃ߮⧯ᚻ⎇ⓥ
㧮‫ޡ‬ᣂᄸ᦭ᯏ⏛ᕈ૕ߩࠞࠗ࡜࡞⏛᳇⒎ᐨߣ⏛᳇శቇലᨐ‫ߦޢ‬ၮߠߊ߽ߩߢ޽ࠆ‫ޕ‬
[1] J. Kishine, K. Inoue, and Y. Yoshida, PTP, Supplement No.159, p.82 (2005).
[2] Y. Kousaka, S. Yano, J. Kishine, Y. Yoshida, K. Inoue, and J. Akimitsu, J. Magn. Magn. Mater
ශ೚ਛ.
Oral 11/27/P04
ࠫએ͂ঽ଻͈ chiralityȇ໦ঊ଻‫ࣣا‬໤!
੗਄ స਽㧔ᐢፉᄢℂ㧕
ಽሶᕈࠠ࡜࡞⏛ᕈ૕ߦߟ޿ߡ‫ޔ‬วᚑᚢ⇛‫ޔ‬᭴ㅧ‫ޔ‬ၮᧄ⊛‛ᕈߦߟ޿ߡ⚫੺ߔࠆ‫ޕ‬ಽሶᕈ⏛ᕈ૕ߢߪᲧセ⊛ኈᤃߦ࿕૕ߩ
᭴ㅧ⸳⸘߇น⢻ߢ޽ࠅ‫ޔ‬ㅘ᣿ߢߒ߆߽శቇ․ᕈߦߟ޿ߡ߽‫ࠆ޽ޔ‬⒟ᐲ⸳⸘น⢻ߢ޽ࠆ‫⏛ޔߜࠊߥߔޕ‬ᕈ૕ߩ⦡‫ޔ‬శቇᵴᕈ
ߩᄢ߈ߐ‫ޔ‬ዮ᛬₸╬߇೙ᓮน⢻ߢ޽ࠆ‫ߩࠄࠇߎޕ‬శቇ‛ᕈߪ‫⏛࡞࡜ࠠޔ‬ᕈ૕ߩᜬߟ․ᱶߥ⏛᳇శቇലᨐߦᄢ߈ߊᓇ㗀ࠍਈ
߃ࠆ‫ߚ߹ޕ‬శቇᵴᕈߩᄢ߈ߐߪ‫⏛ߩߘޔ‬᳇᭴ㅧߦ߽ᓇ㗀ߔࠆߣ⠨߃ࠄࠇࠆ‫੹ޕ‬࿁ߪࠠ࡜࡞᭴ㅧࠍᜬߟಽሶᕈ⏛ᕈ૕ߦߟ޿
ߡὶὐࠍߒ߷ࠅ‫․ߩߘޔ‬ᓽ‫ޔ‬น⢻ᕈߦߟ޿ߡ⠨ኤߒߚ޿‫ޕ‬
Oral 11/27/P05
ࠫએ͂ঽ଻͈ chiralityȇྫ‫ࣣاܥ‬໤!
⑺శ
⚐㧔㕍ቇᄢℂᎿ㧕
৻⥸⊛ߦⲷᣓ⏛ᕈߩฝᏎ߈ߣᏀᏎ߈ߪ❗ㅌߒߡ߅ࠅ‫ޔ‬ฝᏎ߈
ᏀᏎ߈ߩߺߩ⏛඙ࠍ↢ᚑߔࠆߎߣߪ࿎㔍ߢ޽ࠆ‫ޔߒ߆ߒޕ‬
ࠞࠗ࡜࡞ߥ⚿᥏᭴ㅧࠍᜬߟ⏛ᕈ૕ߢߪ Dzyaloshinskii-Moriya ⋧੕૞↪ߦࠃࠅ‫ޔ‬ฝᏎ߈
ᏀᏎ߈ߩߺߩ⏛඙ࠍ↢ᚑߔࠆ
ߎߣ߇น⢻ߣߥࠅ‫ⲷ࡞࡜ࠗࠞޔ‬ᣓ⏛᳇᭴ㅧ߇ታ⃻ߔࠆ‫ޕ‬ήᯏൻว‛ߪಽሶᕈൻว‛ߣᲧセߒߡ⚿᥏᭴ㅧߩ೙ᓮ߇࿎㔍ߢ޽
ࠆ߇‫ޔ‬ᄢဳන⚿᥏⹜ᢱߩ⢒ᚑ߇Ყセ⊛ኈᤃߢ޽ࠆߚ߼᭽‫‛ߥޘ‬ᕈ᷹ቯ߇ⴕ߃ࠆߎߣ߇㐳ᚲߢ޽ࠈ߁‫ߟߊ޿ޔߪߢ⴫⊒ᧄޕ‬
߆ߩήᯏൻว‛ࠍ଀ߦ᜼ߍ‫ⲷ࡞࡜ࠗࠞޔ‬ᣓ⏛ᕈߩน⢻ᕈࠍℂ⺰ߣታ㛎ߩਔ㕙߆ࠄ⼏⺰ߔࠆ‫ⲷ࡞࡜ࠗࠞޔߚ߹ޕ‬ᣓ⏛ᕈࠍᬌ
಴ߔࠆߚ߼ߩᣂߚߥ‛ᕈ᷹ቯᚻᴺߦߟ޿ߡ߽ឭ᩺ߒߚ޿‫ޕ‬
49
Oral 11/27/P06
ΑάΥσॸ‫ا‬໤͂ഩ‫ك‬ȆܴൽȆΑάϋȆ‫ڒ‬ঊࣣ࡛ࠫય!
਄↰
ኡ㧔᧲ᄢ‛ᕈ⎇㧕
ࠬࡇࡀ࡞㉄ൻ‛ AB2O4 ߦ߅޿ߡ B ࠨࠗ࠻ߪᱜ྾㕙૕߇㗂ὐࠍ౒᦭ߒߚࡄࠗࡠࠢࡠࠕᩰሶߣ๭߫ࠇࠆ 3 ᰴరࡀ࠶࠻ࡢ࡯
ࠢࠍᒻᚑߒߡ޿ߡ‫ޔ‬B ࠨࠗ࠻⏛ᕈࠗࠝࡦ㑆ߦ෻ᒝ⏛ᕈ⋧੕૞↪߇௛ߊ႐วߩ⏛᳇⒎ᐨ߿㔚⩄⒎ᐨߦኻߒ‫ޔ‬ᒝ޿ᐞ૗ቇ⊛ࡈ
࡜ࠬ࠻࡟࡯࡚ࠪࡦߩ⥰บߣߥࠆ‫ޔߚ߹ޕ‬㜞ኻ⒓ᩰሶ♽ߢߩ゠㆏❗ㅌ߿ᩰሶਇ቟ቯᕈߥߤߦ⿠࿃ߔࠆ᭽‫⋧ߥޘ‬ォ⒖߇ᦼᓙߢ
߈ࠆ‫৻ޕ‬ᣇ‫ߊࠃߪߡߒߣ♽⾰‛ޔ‬⍮ࠄࠇߚ㋶‛‛⾰ߢ‫ޔ‬B ࠨࠗ࠻ࠗࠝࡦੑߟ޽ߚࠅ d 㔚ሶ߇ 0 ୘߆ࠄ 10 ୘߹ߢߩ‛⾰߇
ߘࠈߞߡ޿ߡ‫ޔ‬d 㔚ሶᢙ
ࠬࡇࡦᢙߩ㆑޿ߦࠃࠆ♽⛔⊛ߥ⎇ⓥ߇ߢ߈ࠆ႐ࠍឭଏߒߡ޿ࠆ‫‛ޕ‬ᕈ⊛ߦ߽⿥વዉ߆ࠄ㊂ሶࠬ
ࡇࡦ♽߹ߢ✂⟜ߒߡ޿ࠆ‫ޔߦ⥸৻ޕ‬ૐ᷷߹ߢ⥄↱ᐲ߇❗ㅌߒߚ⁁ᘒ߇଻ᜬߐࠇࠆ႐วߪዋߥߊ‫ޔ‬㔚⩄࡮゠㆏࡮ࠬࡇࡦ࡮ᩰ
ሶ⥄↱ᐲߩ⚿วߦࠃࠆ⋧ォ⒖߇᷹ⷰߐࠇࠆ႐ว߇ᄙ޿‫ߩࠄࠇߘޕ‬ォ⒖ߪ‫ࠄ⥄ޔ‬ᄌりߒߡࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦ߿❗ㅌࠍ✭๺
ߔࠆ⥄Ꮖ⚵❱ൻߣ๭߱ߦ⋧ᔕߒ޿‫ޕ‬
Oral 11/27/P07
Αάϋ 1/2 ၾঊ̥̮͛‫ڒ‬ঊঽ଻ఘ͈έρΑΠτȜΠঽ଻!
೨Ꮉ
ⷡ㧔੩ᄢੱⅣ㧕
s=1/2 ߩ Cu2+ࠗࠝࡦ߇߆ߏ߼ᩰሶࠍᒻᚑߒߡ޿ࠆ㊄ዻ㍲૕ൻว‛[Cu3[titmb]2(CH3CO2)6]࡮H20㧔⇛⒓ Cutitmbߪ㊂
ሶࠬࡇࡦ߆ߏ߼ᩰሶ⏛ᕈ૕ߩࡕ࠺࡞‛⾰ߣ⠨߃ࠄࠇ‫⏛ޔ‬ൻ₸‫ޔ‬NMR‫ޔ‬ESR‫ޔ‬Ყᾲ‫ࠬ࡞ࡄޔ‬㜞⏛႐⏛ൻ╬ߩታ㛎߇ߥߐࠇ
ߡ޿ࠆ‫ޕ‬੤឵⋧੕૞↪ߩᄢ߈ߐߥߤ⋧෻ߔࠆ⚿ᨐ߇ᓧࠄࠇߡ߅ࠅ‫ߥ⇣․ޔߚ߹ޔ‬ബ⿠⁁ᘒ߿Ḱ቟ቯߥ⁁ᘒߩሽ࿷߇␜ໂߐ
ࠇߡ޿ࠆ‫ޕ‬ℂ⺰⊛ߦߪ J1J2 ࡕ࠺࡞߇ឭ᩺ߐࠇߡ޿ࠆ‫ޔߒ࡯ࡘࡆ࡟ߡ޿ߟߦࠄࠇߎޕ‬⠨ኤߔࠆ‫ޕ‬
Oral 11/27/P08
ୃ༷‫ڒ‬ঊέρΑΠτȜΏοϋࠏ͈৘ࡑ!
✂ઍ ⧐᳃㧔੩ᄢℂ㧕
ੑᰴరᱜᣇᩰሶ Heisenberg ෻ᒝ⏛ᕈ૕ߩ⎇ⓥߪ⋧ォ⒖ߩሽุߦ㑐ߒߡᄙᄢߥࠆ㑐ᔃ߇ฎߊ߆ࠄነߖࠄࠇߡ᧪ߚ߇‫ޔ‬
㜞᷷⿥વዉߩ⊒⃻ᯏ᭴ߣߩ㑐ㅪߢ 80 ᐕઍએ㒠‫ ߦ․ޔ‬S=1/2 ㊂ሶࠬࡇࡦ♽ߩ⎇ⓥ߇ᵴ⊒ߦⴕࠊࠇߡ޿ࠆ‫ޕ‬ૐᰴర㊂ሶࠬࡇ
ࡦ♽ߪᰴరᕈߩૐਅߣૐࠬࡇࡦ୯ࠍ෻ᤋߒߡᒝ޿㊂ሶំࠄ߉ࠍ␜ߔ߇‫⋧ޔ‬੕૞↪ߩࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦലᨐࠍട๧ߔࠆߎ
ߣߦࠃߞߡᦝߦ㊂ሶំࠄ߉ࠍჇᒝߐߖࠆߎߣ߇಴᧪ࠆ‫ޕ‬㊂ሶലᨐߣࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦലᨐߣߩ⋧ਸ਼ലᨐߦࠃߞߡ߽ߚࠄ
ߐࠇࠆᣂᄸߥ⏛᳇⋧ߩ⎇ⓥߪਃⷺᩰሶ♽߿ࠞࠧࡔᩰሶ♽ߢᵴ⊒ߦⴕࠊࠇߡ޿ࠆ߇‫⻠ᧄޔ‬Ṷߢߪᱜᣇᩰሶߩኻⷺᣇะߦᰴㄭ
ធ⋧੕૞↪߇ሽ࿷ߔࠆ޿ࠊࠁࠆ J1J2 ࡕ࠺࡞ߦ㑐ߔࠆᦨㄭߩታ㛎⎇ⓥߦߟ޿ߡ‫ߦ․ޔ‬੩ᄢࠣ࡞࡯ࡊߦࠃߞߡࠗࠝࡦ੤឵ᴺ
ࠍ㚟૶ߒߡഃ⵾ߐࠇߡ޿ࠆ৻ㅪߩࡕ࠺࡞‛⾰⟲ߩታ㛎⚿ᨐࠍ⚫੺ߔࠆ‫ޕ‬
Oral 11/27/P09
‫ޑ‬ঽ଻ဝ̨͈ͣ‫̞ޑ‬έρΑΠτȜΠঽ଻ఘ̤̫ͥͅၾঊΑάϋ‫ס‬ఘ!
᩶੗
ീ㧔ℂ⎇㧕
ㄭᐕ‫ޔ‬࿕૕ He3 ⭯⤑߅ࠃ߮(CuCl)LaNb2O7 ╬ߩᒝ⏛ᕈំࠄ߉ߩᒝ޿ࡈ࡜ࠬ࠻࡟࡯࠻෻ᒝ⏛ᕈ૕ߦ߅޿ߡ㊂ሶࠬࡇࡦᶧ
૕⁁ᘒ߇⊒⷗ߐࠇߚ‫ߩߢ߹ࠇߎޔߒ߆ߒޕ‬ℂ⺰⎇ⓥߪ‫ޔ‬෻ᒝ⏛ᕈ⋧੕૞↪ߩ┹วࠍᜬߟࡈ࡜ࠬ࠻࡟࡯࠻♽߇ਛᔃߢ‫
ޔ‬ᄙ
ߊߩ႐ว‫ޔ‬෻ᒝ⏛ᕈ⋧੕૞↪ߩᕈ⾰߆ࠄ࠳ࠗࡑ࡯ࠪࡦࠣ࡟࠶࠻⁁ᘒ߇⃻ࠇࠆ㨫ᒝ⏛ᕈំࠄ߉ߩᒝ޿ࡈ࡜ࠬ࠻࡟࡯࠻♽ߪߎ
ࠇ߹ߢ޽߹ࠅ⺞ߴࠄࠇߡ޿ߥ޿‫ޕ‬
੹࿁‫ࠍࡦ࡚ࠪ࡯࡟࠻ࠬ࡜ࡈޔ‬ᜬߟᒝ⏛ᕈ૕ߦ߅ߌࠆ㊂ሶ⊛ή⒎ᐨ⋧ߩ಴⃻ߩน⢻ᕈࠍ᣿ࠄ߆ߦߔࠆߚ߼ߦ‫ޔ‬2 ૕ߩᒝ⏛
50
ᕈ⋧੕૞↪߇ᡰ㈩⊛ߥᒝ⏛ᕈ J1J2 ᮨဳ߿࡝ࡦࠣ੤឵ᮨဳࠍᱜᣇᩰሶ਄ߢℂ⺰⊛ߦ⺞ߴߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ᒝ⏛ᕈ⋧ߩ㓞ߦࠬ
ࡇࡦ㐳〒㔌⒎ᐨߩߥ޿㊂ሶࠬࡇࡦᶧ૕⋧߇⃻ࠇࠆ੐ࠍ⷗ߟߌߚ‫⁁ߩߎޔߦࠄߐޕ‬ᘒߪࠬࡇࡦߩ 4 ㊀ᭂ⒎ᐨࠍᜬߟࠬࡇࡦ
ࡀࡑ࠹ࠖ࠶ࠢ⁁ᘒߣ޿߁ᣂᄸߥ㊂ሶ⋧ߢ޽ࠆߎߣࠍ⷗಴ߒߚ‫ޕ‬
Oral 11/27/P10
‫ޑ‬ঽાͥ͢ͅၾঊΑάϋ͈ࡄ‫!ݪ‬
㡆ᶏ ᐽ㓶㧔᧲ᄢ‛ᕈ⎇㧕
㊂ሶࠬࡇࡦ⎇ⓥߩߪߒࠅߣߥߞߚࡂ࡞࠺ࡦࠡࡖ࠶ࡊߦ㑐ߔࠆ⎇ⓥߪ‫ޔ‬ㄭᐕߢߪ NDMAP ߥߤߩ⏛႐⺃⿠⏛᳇⋧ォ⒖߳
ߣ⥝๧߇⒖ࠅߥ߇ࠄ‫⃻ޔ‬࿷ߢ߽ߘߩ⎇ⓥߩ⵿㊁ࠍᐢߍߡ޿ࠆ‫ޕ‬ᱧผ⊛ߥᵹࠇࠍᝄࠅ㄰ࠆߣ‫ߥ☴⚐ߩ᧪ᧄޔ‬ᗧ๧ߢߩࡂ࡞࠺
ࡦ‛⾰ߩ⎇ⓥߦ㑐ߒߡߪ‫⏛ోߩߘޔ‬ൻㆊ⒟ࠍ᷹ⷰߔࠆߎߣ߇ߢ߈ࠆ໑৻ߩ‛⾰ߣߒߡ TMNIN ߇ᵈ⋡ߐࠇ‫⃻ޔ‬࿷ߢ߽⇣
ᣇᕈߩ߈ࠊ߼ߡዊߐߥℂᗐ⊛ߥࡂ࡞࠺ࡦ‛⾰ߢ޽ࠆߣ⹺⼂ߐࠇߡ޿ࠆ‫ޔߒ߆ߒޕ‬න⚿᥏⹜ᢱߩวᚑ߇࿎㔍ߢ޽ߞߚ
TMNIN ߢߪ☳ᧃ⹜ᢱߦࠃࠆ⎇ⓥ߇߶ߣࠎߤߢ޽ߞߚߎߣ‫ޔߚ߹ޔ‬੤឵⋧੕૞↪ߩᄢ߈ߐߦኻߒߡචಽߥૐ᷷ߢߩታ㛎߇
࿎㔍ߢ޽ߞߚߎߣߥߤ‫ޔ‬චಽߥ⼏⺰ߦ⠴߃߁ࠆߛߌߩታ㛎߇ⴕࠊࠇߡ߈ߚߣߪ⸒߃ߥ޿ߣ⠨߃ࠄࠇࠆ‫ᦨޕ‬ㄭ‫ޔ‬ᚒ‫ߪޘ‬න⚿
᥏⹜ᢱࠍ↪޿ߚᭂૐ᷷ਅߢߩᒝ⏛႐⏛ൻ᷹ቯࠍⴕ޿‫ޔ‬න⚐ߥࡂ࡞࠺ࡦ㎮ߢߪ⺑᣿ߢ߈ߥ޿ᄸᅱߥᝄࠆ⥰޿ࠍ᷹ⷰߒߚߩߢ‫ޔ‬
ߘߩታ㛎⚿ᨐߦߟ޿ߡႎ๔ߔࠆ‫ޕ‬
Oral 11/28/A01
ˍষࡓ́۷಼̢̹ρζϋ‫ړ‬ΑάϋȽ‫ڒ‬ঊ۱გً೾!
ጊᧄ ᣽ม㧔ർᄢℂ㧕
੤ᦧࠬࡇࡦ㎮‫ޔ‬㌃ 3 ㊂૕ 2 ㊀㎮╬‫ޔ‬ᡆ㧝ᰴరࡈࠚ࡝⏛ᕈൻว‛ߦ߅ߌࠆ‫ޔ‬ᩭࠬࡇࡦ㧙ᩰሶ✭๺ߩᣂߒ޿ℂ⺰‫ޔ‬ਗ߮ߦ
ߘߩታ㛎ᬌ⸽ߦߟ޿ߡ⚫੺ߔࠆ‫ޕ‬ㅢᏱᡰ㈩⊛ߥ㧞ࡑࠣࡁࡦ޿ࠊࠁࠆ࡜ࡑࡦㆊ⒟ࠍ‫ࠅࠃޔ‬㜞ᰴߩᄙ㊀ࡑࠣࡁࡦᢔੂㆊ⒟߇ಒ
㚧ߒߡ‫✭ߥࠢ࡯࠾࡙ޔ‬๺₸᷷ᐲ࡮⏛႐ଐሽᕈ߇⃻ࠊࠇࠆ᭽ࠍ‫ޔ‬ℂ⺰࡮ታ㛎ਔ㕙߆ࠄ┙⸽ߒߡࠁߊ‫ޕ‬
Oral 11/28/A02
΢ΦΑΉȜσ໦ঊঽ଻ఘ͈˪˩ˮ!
ฎᎹ ⵨ᰴ㧔ർᄢℂ㧕
8 ߟߩ Cr3+ࠗࠝࡦ
S = 3 / 2߇࡝ࡦࠣࠍᒻᚑߔࠆ Cr8 ࠢ࡜ࠬ࠲࡯ߪ‫ޔ‬Cr ࠬࡇࡦ㑆ߦ෻ᒝ⏛ᕈ⋧੕૞↪߇ሽ࿷ߔࠆߚ߼ၮ
ᐩ⁁ᘒ߇ S=0 ߩࠪࡦࠣ࡟࠶࠻⁁ᘒࠍߣࠆ‫⻠ᧄޕ‬Ṷߢߪ‫ ߩߘޔ‬S=0 ߩၮᐩ⁁ᘒࠍᜬߟ෻ᒝ⏛ᕈ࡝ࡦࠣࠢ࡜ࠬ࠲࡯Cr8 ਛ
ߩ߭ߣߟߩ Cr3+ࠗࠝࡦࠍ s = 0 ߩ Cd ߦ⟎឵ߒߚ Cr7Cd ࠢ࡜ࠬ࠲࡯ࠍኻ⽎ߦ‫⟎ߩߘޔ‬឵ߦ઻߁⏛᳇⁁ᘒߩᄌൻࠍ NMR ߦ
ࠃࠅ⺞ߴߚߩߢ‫⚿ߩߘޔ‬ᨐࠍႎ๔ߔࠆ‫ޕ‬
Oral 11/28/A03
ၾঊΑάϋȆ·ρΑΗȜ̤̫ͥͅΑάϋ Jahn-Teller!࢘‫!ض‬
ኹየ
ᵘ㧔ାᎺᄢℂ㧕
ࠬࡇࡦ 1/2 ߆ࠄ 5/2 ߹ߢߩ‫ޔ‬ᱜਃⷺᒻ෸߮ᱜ྾㕙૕ߩࠢ࡜ࠬ࠲࡯ߦߟ޿ߡ‫ޔ‬Heisenberg ࡂࡒ࡞࠻࠾ࠕࡦߩၮᐩ⁁ᘒࠍ
⸘▚ߒߚ‫ ߇ࡦࡇࠬޕ‬3/2 ࠃࠅᄢ߈޿ߣ߈ߪ Mathematica ߩⴕ೉⸘▚ࠍ೑↪ߒߚ‫࡮ࡦࡇࠬޔߦࠇߎޕ‬ᄌ૏⚿วߩ៨േ߇ട
ࠊߞߚߣ߈‫ޔ‬ၮᐩ⁁ᘒߩ❗ㅌ߇㒰߆ࠇࠆ߆ߤ߁߆ࠍ⺞ߴߚ‫ޕ‬ᄌ૏ࠍ㕒⊛ߦᛒ߁ᢿᾲㄭૃߣ‫ޔ‬㊂ሶࡈࠜࡁࡦߢേ⊛ߦᛒߞߚ
႐วߢߪ❗ㅌߩಽⵚߦߟ޿ߡߩ⚿ᨐ߇⪺ߒߊ⇣ߥࠆ‫ ࡦࡇࠬޕ‬1/2 ߩ႐วߪ‫ޔ‬HFM2006‫ޔ‬ICM2006 ߢᣢߦႎ๔ߒߚ‫ޕ‬
੹࿁ߪ‫ߩࡦࡇࠬޔ‬ᄢ߈޿႐วߦߟ޿ߡߩ⚿ᨐࠍㅊടߔࠆ‫ޕ‬
51
Oral 11/28/A04
ၾঊΑάϋΘͼζȜࠏ͈ΑάϋȆΘͼ΢η·Α!
⋉↰ 㓉༹㧔ᮮᵿᏒᄢ㧕
S=1/2 ߩ㊂ሶ࠳ࠗࡑ࡯ߪ‫ޔ‬ᄙߊߩࠬࡇࡦ࡮ࠡࡖ࠶ࡊ♽ߩၮᧄ᭴ᚑⷐ⚛ߣߒߡ㊀ⷐߢ޽ࠆ‫࡯ࡑࠗ࠳ޕ‬න૕ߪࠪࡦࡊ࡞ߢ޽
ࠆ߇‫⋧ޔ‬੕૞↪ߔࠆ࠳ࠗࡑ࡯ߪߘߩᐞ૗ቇ⊛㈩⟎ߦࠃߞߡ‫ࡦࡇࠬޔ‬᪽ሶ‫ޔ‬੤ᦧ㎮‫ޔ‬Shastry-Sutherland ᩰሶߥߤ᭽‫ߥޘ‬
ࠬࡇࡦ࡮ࠡࡖ࠶ࡊ♽ߦಽ㘃ߐࠇࠆ‫ޕ‬ዋߒᄌࠊߞߚߣߎࠈߢߪ‫ޔ‬ᒝ⏛ᕈ࠳ࠗࡑ࡯߇ 1 ᰴర㎮ࠍᒻᚑߔࠆⶄวࡂ࡞࠺ࡦ♽߽
࠳ࠗࡑ࡯♽ߩ৻⒳ߣ޿߃ࠆ‫ᦨޕ‬ㄭߪ‫߇࡯ࠡ࡞ࡀࠛߩࡊ࠶ࡖࠡ࡮ࡦࡇࠬޔ‬ታ⃻น⢻ߥ⏛႐ࠬࠤ࡯࡞ߣࡑ࠶࠴ߒߚ‛⾰߇ᢙᄙ
ߊႎ๔ߐࠇߡ߅ࠅ‫⏛ޔ‬ൻࡊ࡜࠻࡯‫ޔ‬triplon ߩࡏ࡯࠭ಝ❗‫࠭࡯ࡏࠆࠃߦࡦ࡚ࠪ࡯࡟࠻ࠬ࡜ࡈޔ‬ಝ❗ߩᰴరૐਅߥߤ‫⥝ޔ‬๧
ᷓ޿⃻⽎߇᷹ⷰߐࠇߡ޿ࠆ‫⻠ᧄޕ‬Ṷߢߪ‫ᦨޔߦ౒ߣ߁ⴕࠍ࡯ࡘࡆ࡟ߩࠄࠇߎޔ‬ㄭᚒ‫⎇ߢࡊ࡯࡞ࠣߩޘ‬ⓥߒߡ޿ࠆⶄวࡂ࡞
࠺ࡦ㎮ IPA-CuCl3 ߩࠬࡇࡦ࡮࠳ࠗ࠽ࡒࠢࠬ߿‫ޔ‬੤ᦧ⏛႐ਅߦ߅ߌࠆ㊂ሶ࠳ࠗࡑ࡯‛⾰ Cu2Fe2Ge4O13 ߥߤߩ⚫੺ࠍⴕ߁‫ޕ‬
Oral 11/28/A05
૧ܰέΛள‫ࣣا‬໤͈ैୋ͂ࣽࢃ͈ࡄ‫!ૻ༷ݪ‬
⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕
ߎࠇ߹ߢࡈ࠶⚛ൻว‛ߪౖဳ⊛ߥ⏛ᕈ૕ߣߒߡᢙᄙߊߩ⎇ⓥ߇ⴕࠊࠇߡ߈ߚ‫ࠄ߇ߥߒ߆ߒޕ‬૞⵾ߩ࿎㔍ߐ߆ࠄᦨㄭߢߪ
ߘߩㅴዷߪ߶ߣࠎߤή޿‫࠻ࠗࠞࠬࡉࡠࡍߢߎߘޕ‬᭴ㅧߦ┙ߜᚯߞߡ‫ޔ‬2 ㊀ጀ⁁ࡍࡠࡉࠬࠞࠗ࠻᭴ㅧࠍᜬߟ
K3M2F7(M=Co,Ni,Cu) ߦᵈ⋡ߒߡ‫⾰‛ޔ‬วᚑࠍߎߩᢙᐕ㑆ⴕߞߡ߈ߚ‫ᦨޕ‬ㄭ‫‛ߣߞ߿ޔ‬ᕈ᷹ቯ߇ⴕ߃ࠆ⒟ᐲߩ☳ᧃ⹜ᢱ
ߩ૞⵾ߦᚑഞߒߚ‫⻠ᧄޕ‬Ṷߢߪߎࠇ߹ߢߩᱧผ⊛ߥ⢛᥊߽߰߹߃ߟߟ‫ޔ‬ฦ⹜ᢱߩ․ᓽ╬ࠍ⚫੺ߔࠆ੍ቯߢ޽ࠆ‫ޕ‬
Oral 11/28/A06
૧‫ܗ‬ഥ൵‫ࢹܥ‬ȶၫ̳ͥˎၾఘ͈ഥ൵ȷ!
!
⍫ࠤፒ స㚍㧔℄⃿ᄢℂ㧕
ࠬࡇࡀ࡞ൻว‛ CuIr2S4 ߪ㊄ዻ⛘✼૕ォ⒖ࠍߒ‫ޔ‬ㅢᏱߩඨዉ૕ߢߪߥ޿࠲ࠗࡊߩવዉߦ⥝๧߇ᜬߚࠇߡ߈ߚ‫ᦨޕ‬ㄭ‫ޔ‬
ߎߩൻว‛ߩ⛘✼⋧ߢߪ‫ޔ‬2 ㊂૕߇ᒻᚑߐࠇ‫⚿ޔ‬᥏᭴ㅧߪਃᢳ᥏ᒻࠍขࠆߎߣ߇್᣿ߒ‫ޔߟ߆ޔ‬ᒝᒝᐲ X ✢ߢᾖ኿ߔࠆ
ߣ‫ޔ‬ૐ᷷ߢᱜᣇ᥏ߦᄌᒻߒ߆ߟ‫ޔ‬વዉᐲ߇ᢙᩴ਄᣹ߔࠆߎߣ߇⊒⷗ߐࠇߚ‫ޕ‬ᚒ‫ߩߎޔߪޘ‬ᄸᅱߥવዉᯏ᭴ߩ⸃᣿ࠍ⋡ᜰߒ
ߡ⧯ᐓߩ⎇ⓥࠍⴕߞߚ‫
ޕ‬1㔚ሶ⁁ᘒࠍ್೎ߔࠆߚ߼ߦ‫ޔ‬S
⎫㤛ߩ৻ㇱࠍ㧻
㉄⚛ߢ⟎឵ߒߚ⹜ᢱߩォ⒖ὐߣવዉ࠲ࠗ
ࡊࠍ‫⟎ޔ‬឵ߒߥ޿⹜ᢱߣᲧセߒߚ‫
ޕ‬2࠳ࠗࡑ࡯ߩ⚿วࠛࡀ࡞ࠡ࡯ߩᄢ߈ߐࠍ⹏ଔߔࠆߚ߼ߦ‫ޔ‬Ꮺ⏛₸ࠍ⸘▚ߒ‫ޔ‬ታ㛎ߢ
ᓧࠄࠇߡ޿ࠆ෻⏛ᕈᏪ⏛₸ߣᲧセߒߚ‫ޕ‬એ਄ߩ⚿ᨐ‫ޔ‬d γsp ゠㆏ߪ⚿᥏ࠍ଻ߟࡏࡦ࠼ࠍᒻᚑߒ‫ޔ‬ォ⒖ߣߪ⋥ធ㑐ଥߥ޿‫ޕ‬
dε 㔚ሶ߇࠳ࠗࡑ࡯ࠍᒻᚑߒ‫ޔ‬ォ⒖߅ࠃ߮વዉߦ㑐ਈߔࠆ‫ߩߘޕ‬ᒻᚑߔࠆࠛࡀ࡞ࠡ࡯ࠡࡖ࠶ࡊߪ㕖Ᏹߦᄢ߈ߊ‫࡯ࡑࠗ࠳ޔ‬
ߪᾲബ⿠ߐࠇߥ޿‫ޕ‬㊄ዻ⛘✼૕ォ૏ߪ‫ޟޔ‬2 ㊂૕ᒻᚑߣදജߒว߁ࡗ࡯ࡦ࠹࡜࡯ലᨐ‫ޔࠅ޽ߢޠ‬વዉᯏ᭴ߪ‫ޔ‬ᣂᄸߥ‫ޟ‬ᣏ
ߔࠆ 2 ㊂૕ߩવዉ‫(ޠ‬traveling dimerconduction)ߢ޽ࠆߎߣࠍ⸃᣿ߒߚ‫ޕ‬
Oral 11/28/A07
2 ষࡓၾঊΑάϋࠏ SrCu2(BO3)2, Cs2CuBr4 ͈ঽ‫ا‬ίρΠȜ
ችේ
ᘕ㧔㕍ቇᄢℂᎿ㧕
SrCu2(BO3)2 ߿ Cs2CuBr4 ߣ޿ߞߚ‛⾰ߪ 2 ᰴర෻ᒝ⏛ᕈ‛⾰ߢ޽ࠅ‫⏛ޔ‬ൻᦛ✢ߦ߅޿ߡࡊ࡜࠻࡯߇᷹ⷰߐࠇߡ޿ࠆ‫ޕ‬
ߎ߁ߒߚ‛⾰ߩ⏛᳇⊛ᕈ⾰ߪ‫⋥ޔ‬੤࠳ࠗࡑ࡯ᩰሶ‫ޔ‬ᱡࠎߛਃⷺᩰሶ਄ߩࠬࡇࡦ1/2 ࡂࠗ࠯ࡦࡌ࡞ࠢᮨဳߢߘࠇߙࠇ⺑᣿
ߢ߈ࠆߣ⠨߃ࠄࠇߡ޿ࠆ‫ߩࠄࠇߎޕ‬ᮨဳߩ⏛႐ਛߢߩၮᐩ⁁ᘒࠍ෩ኒኻⷺൻߥߤߩᚻᴺࠍ↪޿ߡ⸘▚ߒ‫ޔ‬ฦࡊ࡜࠻࡯ߦ߅
ߌࠆၮᐩ⁁ᘒߩᕈ⾰ߦߟ޿ߡ⠨ኤߒߚ⚿ᨐࠍ␜ߔ‫ޕ‬
52
Oral 11/28/A08
SrCu2(BO3)2 ̤̫ͥͅ૧̱̞ࣞգ௖
๺᳇
೰㧔᧲ᄢ‛ᕈ⎇㧕
SrCu2(BO3)2 ߪ Cu2+(S=1/2)ੑ㊂૕ࠍၮ⺞ߣߒߚࠬࡇࡦࠡࡖ࠶ࡊ‛⾰ߢ‫⏛ޔ‬ൻࡊ࡜࠻࡯╬ߩ⥝๧ᷓ޿⏛ᕈࠍ␜ߔ‫࡜ࡊޕ‬
࠻࡯㗔ၞߢߪੑ㊂૕㑆ߩࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦߩലᨐߦࠃࠅബ⿠࠻࡝ࡊ࡟࠶࠻߇ዪ࿷ൻߒ‫⿥߇ࠄࠇߘޔ‬᭴ㅧࠍᒻᚑߒߡ޿ࠆ‫ޕ‬
ᧄ♽ߩ⏛ᕈߪੑ㊂૕ߩᐞ૗ቇ⊛㈩೉߅ࠃ߮ߘߩ⋧੕૞↪ߩᲧ߇㊀ⷐߢ‫ޔ‬࿶ജࠍട߃ੑ㊂૕㑆‫ޔ‬ౝߩ⋧੕૞↪ࠍᄌൻߐߖࠆ
ߎߣߢᣂᄸߥ⋧ߩ಴⃻߇ᦼᓙߐࠇࠆ‫ޕ‬ᚒ‫ߪޘ‬㜞࿶ਅߢߩ⏛ᕈࠍ᣿ࠄ߆ߦߔࠆߚ߼ⷺᐲ࿁ォဳ㜞࿶࠮࡞ࠍ↪޿ⷺᐲಽ⸃
11B-NMR ࠍⴕߥߞߚ‫ޕ‬c ゲߣᐔⴕߦ⏛႐ࠍශടߒߚ႐ว‫ޔ‬Ᏹ࿶ߢߪᩭ྾㊀ᭂ⋧੕૞↪ߦࠃࠅಽⵚߒߚ 1 ⚵ߩାภ߇᷹ⷰ
ߐࠇࠆ߇‫ޔ‬㜞࿶ૐ᷷᧦ઙਅߢࠪࡈ࠻ߩ⇣ߥࠆ 2 ⚵ߩାภࠍ᷹ⷰߒߚ‫ ߚ߹ޕ‬T=4K એਅߢߪ‫ ߦᦝ߇ࠇߙࠇߘޔ‬2 ⚵ߠߟߦ
ಽⵚߒ‫৻ߩࠇߙࠇߘޔ‬ᣇߪࠡࡖ࠶ࡊ⊛ߥᝄࠆ⥰޿ߢ‫৻߁߽ޔ‬ᣇߪࠡࡖ࠶ࡊ࡟ࠬߥᝄࠆ⥰޿ߢ޽ߞߚ‫ ߪࠇߎޕ‬CuCu ੑ㊂
૕ߦߟ޿ߡᦨૐ᷷ߢࠪࡦࠣ࡟࠶࠻ߩࡍࠕߣࠡࡖ࠶ࡊ࡟ࠬߩࡍࠕ߇ⓨ㑆⊛ߦᢛ೉ߒߚ⏛᳇⒎ᐨࠍ⿠ߎߒߡ޿ࠆߎߣࠍᗧ๧ߒ
ߡ޿ࠆ‫᦭ߪࡦࡇࠬߚ߹ޕ‬㒢ߩ⥄⊒⏛ൻࠍᜬߞߡ޿ߥ޿ߎߣ߆ࠄ‫ߡ޿߅ߦ♽ᧄޔ‬ട࿶ਅߢᣂᄸߥ⋧߇⊒⃻ߒߡ޿ࠆߣ⠨߃ࠄ
ࠇࠆ‫ޕ‬
Oral 11/28/A09
Contractor-renormalization approach to unconventional phases in
frustrated magnets
ᚭႦ ࿻੺㧔੩ᄢၮ⎇㧕
ᦨㄭ‫ޔ‬ᰴㄭធ⋧੕૞↪‫ޔ‬4 ૕੤឵⋧੕૞↪ߥߤࠍ฽߻⏛ᕈ૕ߢᣂߒ޿࠲ࠗࡊߩ⋧߇಴⃻ߔࠆߎߣ߇ᢙ୯⊛ߦ੍⸒ߐࠇߡ
޿ࠆ‫ߥ߁ࠃߩߎߢࡓ࠭࠾ࠞࡔߥ߁ࠃߩߤޔߒ߆ߒޕ‬ᣂᄸߥ⋧߇಴⃻ߔࠆߩ߆‫ޔ‬ᓥ᧪߆ࠄ⍮ࠄࠇߡ޿ࠆࡀ࡯࡞⒎ᐨ⋧ߥߤߩ
⋧ߣߤߩࠃ߁ߥ㑐ଥߦ޽ࠆߩ߆‫ࠅ߹޽ߪߡ޿ߟߦߤߥޔ‬ℂ⸃߇ㅴࠎߢ޿ࠆߣߪ⸒߃ߥ޿‫ߩߢ♽ߥ߁ࠃߩߎޕ‬ᣂᄸ⋧ߩ಴⃻
ࡔࠞ࠾࠭ࡓߦኻߒߡ‫◲ߟ߆⊛৻⛔ޔ‬නߥឬ௝ࠍਈ߃ࠆߚ߼‫ޔ‬contracter renormalization ᴺߣ๭߫ࠇࠆᣇᴺࠍ↪޿ߡరߩ
♽ࠍ⋧੕૞↪ߔࠆࡏ࠱ࡦ♽ߦࡑ࠶ࡊߒ‫᦭ޔ‬ലࡕ࠺࡞ࠍ᭴ᚑߒߚ‫ߥ߹ߑ߹ߐޔߣࠆࠃߦࠇߎޕ‬ᣂᄸ⋧ߪ‫⇣ߩࡦ࠱ࡏޔ‬ᣇ⊛ߥ
ಝ❗⁁ᘒߣߒߡℂ⸃ߐࠇ‫ߩ࠲࡯ࡔ࡜ࡄ࡯࠳࡯ࠝࠆߥ⇣ߊో⷗৻ޔ‬㑆ߦ߽ߐ߹ߑ߹ߥ㑐ଥ߇޽ࠆߎߣ߇ࠊ߆ࠆ‫ޕ‬
Oral 11/28/A10
ୟ௄२‫ڒڙ‬ঊ໤ৗ LuFe2O4 ͈ঽ‫ܨ‬ಉ੬ً೾
ടୖ੗ ๺ਭ㧔ේሶജᯏ᭴㧕
We report in this paper an anomalous magnetic ordering process inthe charge ordered LuFe2O4. The neutron
scattering experiments wereperformed on TAS-1 and TAS-2 instruments installed at JAEA-JRR-3. Thefollowing
results are obtained: 1) Despite the triangular configuration a strong 2-D antiferromagneticcorrelation with
ferrimagnetic component in the double layer in thehexagonal plane develops to a 3-D order along the c-axis at
TN=242K. 2)
At around 177K there is another characteristic temperature Tf, where newtype of broad magnetic peaks start to
grow and at the same time the magneticpeaks already developed below TN also acquire finite line width,
includingthe peaks due to the ferrimagnetic component. A strong hysteresis isobserved at Tf. 3) Field dependence of
Tf was investigated. Upon applying the fieldperpendicular to the layer plane, Tf decreases and vanishes above
3T.The existence of the anomalous magnetic ground state will be demonstratedand the possible relation to the
orbital degree of freedom will bediscussed. 53
Oral 11/28/P01
२‫ڒڙ‬ঊခ‫ܥ‬κΛΠ୲‫׻‬ఘ̤̫ͥͅΑάϋ‫ס‬ఘ಼͂ഥ൵
㣮㊁↰ ৻ม㧔᧲ᄢᎿ㧕
k-(ET)2Cu2(CN)3 ߪ‫ޔ‬ጀ⁁᭴ㅧࠍᜬߟᡆ 2 ᰴరવዉ૕ߢ޽ࠆ‫ޕ‬વዉጀߢߪ‫ޔ‬ET ಽሶ 2 ㊂૕(ET)2 ߇⇣ᣇ⊛ਃⷺᩰሶࠍ
ᒻᚑߒߡ޿ࠆ߇‫ޔ‬2 ㊂૕㑆ߩ⒖േⓍಽߢ⷗ࠆ㒢ࠅ‫ޔ‬ᱜਃⷺᩰሶߦᭂ߼ߡㄭ޿‫ޔߪ⾰‛ߩߎޕ‬Ᏹ࿶ਅߢߪࡕ࠶࠻⛘✼૕ߢ޽
ࠆ߇‫ޔ‬ዋߥߊߣ߽ 30mK ߹ߢߪ⏛᳇⒎ᐨࠍ␜ߐߥ޿‫⏛ޕ‬ൻ₸ߩ᷷ᐲଐሽᕈ߆ࠄ⷗Ⓧ߽ࠄࠇߚ෻ᒝ⏛ᕈ੤឵⋧੕૞↪߇
250K ⒟ᐲߢ޽ࠆߎߣࠍ⠨߃ࠆߣ‫ޔ‬㊂ሶࠬࡇࡦᶧ૕⁁ᘒߣ๭߱ߴ߈⁁ᘒߦ޽ࠆߣ⠨߃ࠄࠇࠆ‫⎇ޕ‬ⓥળߢߪ‫⁁ߩߎޔ‬ᘒߦߟ
޿ߡ੹߹ߢߦᓧࠄࠇߡ޿ࠆታ㛎⚿ᨐࠍ᭎ⷰߔࠆߣߣ߽ߦ‫ޔ‬ട࿶ߦࠃߞߡࠬࡇࡦᶧ૕߆ࠄ↢ߓࠆ⿥વዉߦ㑐ߔࠆ⎇ⓥߦߟ޿
ߡ߽ႎ๔ߔࠆ‫ޕ‬
Oral 11/28/P02
ඵষࡓ२‫ڒڙ‬ঊ฽‫ޑ‬ঽ଻ఘ NiGa2S4 ̤̫ͥͅΑάϋ͈ྫಉ੬̈́ၾঊેఠ
ධㇱ 㓶੫㧔੩ᄢℂ㧕
⏛᳇⒎ᐨࠍᛥ߃ࠆߎߣߦࠃߞߡૐ᷷ߢ⃻ࠇࠆᣂᄸߥ㊂ሶ⁁ᘒߩน⢻ᕈ߆ࠄ‫ޔ‬ᐞ૗ቇ⊛ࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦࠍᜬߟ⏛ᕈ૕
߇ᵈ⋡ߐࠇߡ޿ࠆ‫ߩߘޕ‬ਛߢ‫ޔ‬᭴ㅧߢᦨ߽ၮ␆⊛ߥ߽ߩߩ߭ߣߟߣߒߡਃⷺᩰሶ෻ᒝ⏛ᕈ૕߇޽ࠆ‫ᦨޕ‬ㄭ‫ޔ‬ᚒ‫ߪޘ‬ጀ⁁ࠞ
࡞ࠦࠥ࠽ࠗ࠼ൻว‛ NiGa2S4 ߇ᭂ߼ߡੑᰴరᕈߩ㜞޿෻ᒝ⏛ᕈ⋧㑐ࠍᜬߟ S=1 ߩਃⷺᩰሶࠬࡇࡦ♽ߢ޽ࠆߎߣࠍ⊒⷗ߒ
ߚ‫ ߪߢ⾰‛ߩߎޕ‬80K ⒟ᐲߩ෻ᒝ⏛ᕈ⊛⋧੕૞↪ߦ߽㑐ࠊࠄߕ‫ᦨޔ‬ૐ᷹ቯ᷷ᐲߩ 0.35K ߹ߢ⏛᳇⊛㐳〒㔌⒎ᐨ߇ሽ࿷ߖ
ߕ‫ޔ‬ૐ᷷߹ߢࠬࡇࡦ߇ή⒎ᐨߥ⁁ᘒߦ޽ࠆߎߣ߇⏛ൻ₸‫ޔ‬Ყᾲ‫ޔ‬ਛᕈሶ࿁᛬ߩ⚿ᨐ߆ࠄಽ߆ߞߡ޿ࠆ‫ޔߚ߹ޕ‬⍴〒㔌⋧㑐
߇⊒㆐ߔࠆ 10 K એਅߦ߅޿ߡ‫ޔ‬Ყᾲ߇᷷ᐲߩੑਸ਼ߦᲧ଀ߒߚᝄࠆ⥰޿ࠍ␜ߒ‫⏛ޔ‬ൻ₸߇ૐ᷷ߢ߽᦭㒢ߦ⇐߹ࠆߎߣ߆ࠄ‫ޔ‬
ੑᰴరߩ S=1 ߩࠬࡇࡦ♽ߦ߅޿ߡ૗ࠄ߆ߩࠦࡅ࡯࡟ࡦࠬ߇ሽ࿷ߔࠆߎߣ߇᣿ࠄ߆ߦߥߞߡ߈ߚ‫ߩߎߪߢ⴫⊒ᧄޕ‬
NiGa2S4 ߣߘߩਇ⚐‛ലᨐߩታ㛎⚿ᨐߦߟ޿ߡ⚫੺ߔࠆ‫ޕ‬
Oral 11/28/P03
२‫ڒڙ‬ঊΑάϋࠏ͈ၑაȽ”Αάϋ‫ס‬ఘ”͂ΑάϋΥζΞͻΛ·௖
Ᏹᰴ ብ৻㧔᧲ᄢ‛ᕈ⎇㧕
Wannier ߩ෻ᒝ⏛ᕈࠗࠫࡦࠣࠬࡇࡦ♽ߩ⋧ォ⒖ߩਇ࿷ߩ⸽᣿߿ Anderson ߩࡂࠗ࠯ࡦࡌ࡞ࠣࠬࡇࡦ♽ߦ߅ߌࠆ RVB
⁁ᘒߩឭ໒એ᧪‫ޔ‬ਃⷺᩰሶߪࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦ♽ߩਛᔃ⊛ߥ⎇ⓥኻ⽎ߢ޽ߞߡ߈ߚ‫ᦨޕ‬ㄭߩ 3He ⭯⤑‫᦭ޔ‬ᯏ⏛ᕈ૕‫ޔ‬
Ni ൻว‛ߩታ㛎࠺࡯࠲ߪࠬࡇࡦᶧ૕⊛ߥᝄࠆ⥰޿ࠍ␜ߒߡ޿ࠆ‫⻠ᧄޕ‬Ṷߢߪਃⷺᩰሶࠬࡇࡦ♽ߩℂ⺰ߩ◲නߥ࡟ࡆࡘ࡯
ߦ⛯޿ߡ‫ޔ‬㕖⏛᳇⊛⒎ᐨߩ㧝ߟߩน⢻ᕈߣߒߡࠬࡇࡦࡀࡑ࠹ࠖ࠶ࠢ⋧ߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬
Oral 11/28/P04
ˎষࡓ͈έρΑΠτȜΠ̱̹ΧΨȜΡ࿅߿͈௖଎̞̾̀ͅ
᳓ፒ 㜞ᶈ‫ޔ‬1 ੹↰ ᱜବ㧔ኾୃᄢ‫ޔ‬1 ᧲ᄢ㒮Ꮏ㧕
⚻〝Ⓧಽ➅ࠅㄟߺ⟲ᴺࠍ↪޿ߡ‫ޔ‬2 ᰴరᱜᣇᩰሶ਄ߢᰴㄭធࡎ࠶ࡇࡦࠣࠍᜬߟࡈ࡜ࠬ࠻࡟࡯࠻ߒߚࡂࡃ࡯࠼ᮨဳߩࡂ࡯
ࡈࡈࠖ࡝ࡦࠣߢߩ⋧࿑ࠍ‫⋧ޔ‬੕૞↪ߩᒝߐ U‫ߩࡦ࡚ࠪ࡯࡟࠻ࠬ࡜ࡈޔ‬ᄢ߈ߐ
ᰴㄭធࡎ࠶ࡇࡦࠣߩᄢ߈ߐt’ࠍࡄ࡜ࡔ࠲
ߣߔࠆᐔ㕙ߢ᣿ࠄ߆ߦߒߚ‫ޕ‬㐳๟ᦼ᭴ㅧࠍ฽߻ 3 ⒳㘃ߩ෻ᒝ⏛ᕈ‫ޔ‬㊄ዻ⋧‫ޔ‬㊂ሶࠬࡇࡦᶧ૕⋧߇ሽ࿷ߒ‫ߩ⋧ߩࠄࠇߘޔ‬
㑆ߩႺ⇇ࠍ⏕ቯߒߚ‫ ߦ․ޕ‬U ߇ᄢ߈޿ߣ߈ߦ࠳ࠗࡑ࡯⒎ᐨߥߤ߇ឭ᩺ߐࠇߡ޿ߚ㗔ၞߪ‫ޔ‬ታ㓙ߦߪ㐳๟ᦼߩ෻ᒝ⏛ᕈ⋧
ߢ޽ࠅ‫৻ޔ‬ᣇ‫࠻࠶ࡕޔ‬ォ⒖ㄭறߩࡕ࠶࠻⛘✼⋧ߦ㊂ሶࠬࡇࡦᶧ૕⋧߇ሽ࿷ߔࠆߎߣࠍ‫⎇ߩࠇࠊࠇࠊޔ‬ⓥ⚿ᨐߪೋ߼ߡ␜ߒ
ߚ‫〝⚻ޔߚ߹ޕ‬Ⓧಽ➅ࠅㄟߺ⟲ᴺߦ㊂ሶᢙ኿ᓇߩᣇᴺࠍ⚵ߺวࠊߖࠆߎߣߢ‫ޔ‬㊂ሶࠬࡇࡦᶧ૕⋧߇ㆇേ㊂ߦ㑐ߒߡ❗ㅌߒ
ߚ⋧ߢ޽ࠅ‫ࡦࡇࠬޔ‬ബ⿠߽ࠡࡖ࠶ࡊ࡟ࠬߢ޽ࠆߎߣࠍ␜ߒߚ‫ޕ޿ߚߒ⴫⊒ߡ޿ߟߦࠄࠇߎޕ‬
54
Oral 11/28/P05
΃ͼρςΞͻͬශ‫ͅة‬۷௶̳̥ͥȉ
Ꮉ᧛
శ㧔㒋ᄢℂ㧕
ࠞࠗ࡜࡝࠹ࠖߪ‫ߩࡦࡇࠬޔ‬ዪᚲ⊛ߥ᭴ㅧߩฝ࡮Ꮐࠍ⴫ߔ㊂ߢ޽ࠆ‫ᦨޕ‬ㄭ‫ޔ‬᭽‫⏛ߥޘ‬ᕈ૕߿⿥વዉ૕ࠍ⥰บߦࠞࠗ࡜࡝
࠹ࠖ߇ᒁ߈⿠ߎߔᣂᄸߥ‛ℂ⃻⽎ߦ⥝๧߇ᜬߚࠇߡ޿ࠆ‫⻠ޕ‬Ṷߢߪ‫ޔ‬ᄙࠬࡇࡦ㊂ߢ޽ࠆࠞࠗ࡜࡝࠹ࠖࠍᅤ૗ߦߒߡታ㛎⊛
ߦ᷹ⷰߔࠆ߆ߦߟ޿ߡ‫ᦨޔ‬ㄭߩታ㛎⚿ᨐߩ⚫੺߽੤߃ߡ‫ޕ޿ߚߒ⹤߅ޔ‬
Oral 11/28/P06
ΑάϋΘͼζȜࠏ͈ၾঊ௖ഢ֊͂ঽ‫ܨ‬႗͈ܳ৘ࡑ
↰ਛ ⑲ᢙ㧔᧲Ꮏᄢ㒮ℂᎿ㧕
෻ᒝ⏛ᕈ⊛੤឵⋧੕૞↪ߢᒝߊ⚿วߒߚࠬࡇࡦኻ
࠳ࠗࡑ࡯߇࠳ࠗࡑ࡯㑆ߩ੤឵⋧੕૞↪ߢ੕޿ߦ⚿วߒߚ♽ߪࠬࡇࡦ
࠳ࠗࡑ࡯♽ߣࠃ߫ࠇߡ޿ࠆ‫ߩ♽ߩߎޕ‬ၮᐩ⁁ᘒߪ৻⥸ߦ᦭㒢ߩബ⿠ࠡࡖ࠶ࡊࠍ߽ߟ singlet ⁁ᘒߢ޽ࠆ߇‫ޔ‬ᄖㇱ⏛႐ߩශ
ട߿࿶ജߦࠃߞߡ੤឵⋧੕૞↪ࠍᄌൻߐߖࠆߎߣߦࠃߞߡ‫߇ࡊ࠶ࡖࠡޔ‬㐽ߓ‫ޔ‬⒎ᐨ⁁ᘒ߳ߩ⋧ォ⒖߇⿠ߎࠆ‫ߥ߁ࠃߩߎޕ‬
ၮᐩ⁁ᘒ㑆ߩ㊂ሶ⋧ォ⒖ߪࠬࡇࡦߩ triplet ⁁ᘒߩ࠰ࡈ࠻ൻ‫ޔ‬ᚗߪࡏ࡯ࠬಝ❗ߣߒߡᝒ߃ࠆߎߣ߇ߢ߈ࠆ‫ߩߎޕ‬㊂ሶ⋧ォ
⒖ࠍ TlCuCl3 ߣ KCuCl3 ߦ߅޿ߡ⹦⚦ߦ⺞ߴߚߩߢ‫⚿ߩߘޔ‬ᨐࠍႎ๔ߔࠆ‫੹ޕ‬࿁ߪ․ߦ࿶ജਅߢ⿠ߎࠆ㊂ሶ⋧ォ⒖ࠍਛ
ᔃߦ⹤ߔ੍ቯߢ޽ࠆ‫ߦ♽࡯ࡑࠗ࠳ࡦࡇࠬߩࠄࠇߎޔߚ߹ޕ‬ዋ㊂ߩ㕖⏛ᕈਇ⚐‛ࠍ࠼࡯ࡊߔࠆߣਇኻࠬࡇࡦ㑆ߩ᦭ല੤឵⋧
੕૞↪ߦࠃߞߡ⏛᳇⒎ᐨ߇⿠ߎࠆ‫᦭ߩߎޕ‬ല੤឵⋧੕૞↪ߪࡎࠬ࠻ߩ♽ߩࠡࡖ࠶ࡊߦᒝߊଐሽߔࠆ‫ߴ⺞߽ߡ޿ߟߦࠇߎޕ‬
ߚߩߢ‫⚿ߩߘޔ‬ᨐ߽วࠊߖߡႎ๔ߔࠆ‫ޕ‬
Oral 11/28/P07
ΑάϋΘͼζȜࠏ͈ၾঊ௖ഢ֊͂ঽ‫ܨ‬႗͈ܳၑა
᧻ᧄ ᱜ⨃㧔㕒ጟᄢℂ㧕
ㄭᐕߩታ㛎ᛛⴚߩㅴᱠߦࠃࠅ‫ⷰߢ߹੹ޔ‬᷹ਇน⢻ߢ޽ߞߚ㗔ၞߦ߅ߌࠆ‛ℂ߇᣿ࠄ߆ߦߐࠇࠃ߁ߣߒߡ޿ࠆ‫ဳౖߩߘޕ‬
⊛ߥ߽ߩ߇ᒝ⏛႐ߢ޽ࠅ‫ޔ‬ᒝ⏛႐ᛛⴚߢߪᣣᧄ߇਎⇇ࠍ࡝࡯࠼ߒߡ޿ࠆ‫ߥ߁ࠃߩߎޕ‬ਛ‫ޔ‬TlCuCl3 ࠍਛᔃߣߒߡ‫ޔ‬ᒝ⏛႐
ߢ⺃⿠ߐࠇࠆ⏛᳇⒎ᐨߩ⎇ⓥ߇⋓ࠎߦⴕࠊࠇߡ޿ࠆ‫ ߪߢ⾰‛ߩߎޕ‬2 ߟߩࠬࡇࡦ߇ᒝߊ⚿วߒߡ࠳ࠗࡑ࡯
1 ㊀㗄㧙3 ㊀
㗄ࠍዪᚲ⊛ߦᒻᚑߔࠆ‫ޕ‬3 ㊀㗄ബ⿠ߪ࠳ࠗࡑ࡯㑆⋧੕૞↪
3 ᰴర⊛ߦࠃߞߡ⚿᥏ਛࠍ⒖േߔࠆߎߣ߇ߢ߈‫ޔ‬ಽᢔ㑐ଥ
ࠍᜬߟࠬࡇࡦᵄߣߒߡ᷹ⷰߐࠇߡ޿ࠆ‫ޕ‬ᒙ⏛႐ߢߪബ⿠ߦࠡࡖ࠶ࡊࠍ᦭ߔࠆ߇‫⏛ޔ‬႐ࠍᒝߊߔࠆߣࠡࡖ࠶ࡊߪᶖᄬߒ‫⏛ޔ‬
႐⺃⿠⏛᳇⒎ᐨࠍ⿠ߎߔ‫ࡦࠗ࠲ࡘࠪࡦࠗࠕ࡮࠭࡯ࡏߩࡦࡁࠣࡑޕ‬ಝ❗ߩ⠨߃߆ࠄߎߩ⋧ォ⒖߇⼏⺰ߐࠇ‫⎇ޔ‬ⓥ߇⋓ࠎߦⴕ
ࠊࠇߡ޿ࠆ‫⻠ᧄޕ‬Ṷߢߪ‫ߥ߁ࠃߩߎޔ‬㊂ሶ⋧ォ⒖ߣ⏛᳇ബ⿠ߦߟ޿ߡߩℂ⺰ࠍ⺑᣿ߒ‫♽࡯ࡑࠗ࠳ޔ‬એᄖߩ㑐ㅪߔࠆ‛⾰ߦ
ߟ޿ߡ߽⼏⺰ࠍⴕ߁‫ޕ‬
Oral 11/28/P08
ˏষࡓ‫ڒ‬ঊࠏ಼̤̫ͥͅၠ൲ࡥఘેఠ͈ౝ॑
㋈ᧁ 㓉ผ㧔᧲ᄢ‛ᕈ⎇㧕
ㄭᐕ‫ޔ‬࿕૕ࡋ࡝࠙ࡓ 4 ߦኻߒߡⴕࠊࠇߚߨߓࠇᝄࠅሶߩታ㛎⚿ᨐࠍฃߌߡ‫⿥ޔ‬ᵹേ࿕૕⁁ᘒߦኻߔࠆ⎇ⓥߦᵈ⋡߇㓸
߹ߞߡ޿ࠆ‫⿥ߩߎޕ‬ᵹേ࿕૕⁁ᘒߦኻߔࠆℂ⺰⊛ࠕࡊࡠ࡯࠴ߩ৻ߟߣߒߡ‫ࡦࡇࠬࠍ࡞࠺ࡕ࠼࡯ࡃࡂ࠭࡯ࡏࠕࠦ࠼࡯ࡂޔ‬
S=1/2 ߩ XXZ ࡕ࠺࡞ߦࡑ࠶ࡊߔࠆᣇᴺ߇޽ࠆ‫⻠ᧄޕ‬Ṷߢߪ‫ޔ‬S=1/2XXZ ࡕ࠺࡞ࠍ↪޿ߡ⺞ߴࠄࠇߚ⿥ᵹേ࿕૕ߦኻߔࠆ
⎇ⓥ⚿ᨐࠍ⚫੺ߔࠆ‫ᦨߦࠄߐޕ‬ㄭ‫ޔ‬ᚒ‫ߚߴ⺞߇ޘ‬㕙ᔃ┙ᣇᩰሶߢ⃻ࠇࠆ⿥ᵹേ࿕૕⁁ᘒߦߟ޿ߡ⚫੺ߔࠆ‫ޕ‬
55
Oral 11/29/A01
ΘͼμκϋΡङ‫ࣣا‬໤ͺΒρͼΠ͈ঽ଻Ȫ৘ࡑȫ
⩵ᳰ ᒾశ㧔⑔੗ᄢᎿ㧕
࠳ࠗࡗࡕࡦ࠼㎮ࡕ࠺࡞ߩ⃻ታ‛⾰୥⵬ߢ޽ࠆࠕ࠭࡜ࠗ࠻(Cu3(CO3)2(OH)2)ߦ㑐ߔࠆታ㛎⎇ⓥ‫ ߦ․ޔ‬1/3 ⏛ൻࡊ࡜࠻࡯ߩ
᷹ⷰ‫⏛ޔ‬ൻ₸‫ޔ‬Ყᾲ‫ޔ‬ᩭ⏛᳇౒㡆╬ߩ᷹ቯ߆ࠄᓧࠄࠇߚ⚿ᨐࠍ⻠Ṷߔࠆ‫ޕ‬
Oral 11/29/A02
ΘͼμκϋΡ߿Αάϋङ͈ঽ‫ܨ‬എ଻ৗ͈ၑაȽ‫ڒ‬ঊ͈έͿς଻͂!
έρΑΠτȜΏοϋ!
ጟᧄ ᷡ⟤‫ޔ‬೑ᩮᎹ ቁ 1㧔᧲Ꮏᄢ㒮ℂᎿ‫ޔ‬1 ⑔੗Ꮏᄢᯏ᪾㧕
࠳ࠗࡗࡕࡦ࠼ဳࠬࡇࡦ㎮ߢߪᩰሶߩࡈࠚ࡝ᕈߣࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦߩ┹วߢ⏛᳇⊛ᕈ⾰ߦ޿ࠈ޿ࠈߣ⥝๧ᷓ޿⃻⽎߇⷗
ࠄࠇࠆ‫ߩߎޕ‬໧㗴ߦ㑐ߒߡ޿ࠈ޿ࠈߥᚻᴺࠍ↪޿ߚ⚿ᨐࠍ⸃⺑ߒߚ޿‫ޕ‬
Oral 11/29/A03
έρΑΠτȜΏοῧၾঊ଻̥ͣ୆ͦͥ͘έͿςঽ଻
㘧↰ ๺↵㧔ၯ₹ᄢℂ㧕
ૐᰴర㊂ሶࡈࠚ࡝⏛ᕈߪߎࠇ߹ߢ‫ޔ‬ᷙวࠬࡇࡦ♽ࠍਛᔃߦ‫⋧ޔ‬੕૞↪ߦࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦ߇ߥߊ Lieb-Mattis ߩቯℂ
߆ࠄᦼᓙߐࠇࠆၮᐩ⁁ᘒ⏛ൻࠍᜬߟ♽ࠍਛᔃߦ⺞ߴࠄࠇߡ߈ߚ‫ޔߒ߆ߒޕ‬ㄭᐕ‫߇ࡦ࡚ࠪ࡯࡟࠻ࠬ࡜ࡈޔ‬ᒝ޿ 1 ᰴర㊂ሶ
ࠬࡇࡦ♽ߢࡈࠚ࡝⏛ᕈࠍ␜ߔ♽ߩ଀߇޿ߊߟ߆⷗ߟ߆ߞߡ߈ߚ‫ޔߪߢ♽ߥ߁ࠃߩߎޕ‬Lieb-Mattis ဳߩࡈࠚ࡝⏛ᕈߣ⇣ߥ
ࠅ⥄⊒⏛ൻߩ୯ߪᔅߕߒ߽㘻๺⏛ൻߩ◲නߥ᦭ℂᢙ୚ߦߥࠄߕ‫ߦ౒ߣ࠲࡯ࡔ࡜ࡄߩ♽ޔ‬ㅪ⛯⊛ߦᄌൻߔࠆߎߣ߇޽ࠆ‫⻠ޕ‬
Ṷߢߪ‫߆ߟߊ޿ࠍ଀ߥ߁ࠃߩߎޔ‬ขࠅ਄ߍ‫౒ߦࠄࠇߘޔ‬ㅢߦ⷗ࠄࠇࠆ․ᓽࠍ᣿ࠄ߆ߦߒߚ޿‫ޕ‬
Oral 11/29/A04
S=2 Αάῧ S=1 Αάϋ̦฽‫ޑ‬ঽ଻എͅ࢐య̱̹։༷എˍষࡓङ͈!
႟ঽા‫ܖ‬ೲેఠ!
೑ᩮᎹ ቁ㧔⑔੗Ꮏᄢᯏ᪾㧕
ᦨㄭ㍲૕ൻቇߩಽ㊁ߢන 1 ᰴర㎮⏛⍹♽ߣߒߡᵈ⋡ߐࠇߡ޿ࠆ Mn3+Ni2+ ♽ࡋ࠹ࡠ㊄ዻ㍲૕ൻว‛:[Mn(Cl4sal
tmen)Ni(pao)2(bpy)](PF6)ࠍᔨ㗡ߦ߅޿ߡ‫ޟޔ‬S=2 ࠬࡇࡦߣ S´=1 ࠬࡇࡦ߇෻ᒝ⏛ᕈ⊛ߦ੤ઍߒߚ⇣ᣇ⊛ 1 ᰴర㎮ߩ㔖⏛
႐ၮᐩ⁁ᘒ‫ޔࠍޠ‬ਥߣߒߡᢙ୯⊛ᣇᴺࠍ↪޿ߡ⼏⺰ߔࠆ‫ޕ‬Mn3+ࠗࠝࡦ
S=2‫ޔ߮ࠃ߅ޔ‬Ni2+ࠗࠝࡦ
S´=1ߦ 1 ゲᕈࠪࡦ
ࠣ࡞ࠗࠝࡦ⇣ᣇᕈࠛࡀ࡞ࠡ࡯ߩሽ࿷ࠍ઒ቯߒ‫ޔ‬੤឵⋧੕૞↪ቯᢙߦኻߔࠆਔ⇣ᣇᕈࠛࡀ࡞ࠡ࡯ቯᢙߩᲧࠍ‫ޔࠇߙࠇߘޔ‬D‫ޔ‬
D´ߣߔࠆ‫ޕ‬D ኻ D´ ᐔ㕙਄ߩၮᐩ⁁ᘒ⋧࿑ߦߪ‫ޔ‬D=D´= 0 ߩߣ߈ߩࡈࠚࠅ⋧એᄖߦ‫ޔ‬6 ⒳㘃ߩ㕖⏛ᕈ⋧߇಴⃻ߔࠆ‫ࠇߎޕ‬
ࠄߩၮᐩ⁁ᘒ⋧㑆ߩ⋧Ⴚ⇇✢ࠍ‫ޔ‬ฦ⒳ߩ࡟ࡌ࡞ࠬࡍࠢ࠻ࡠࠬࠦࡇ࡯ᴺ‫ࠅ➅⺰⽎⃻ޔ‬ㄟߺᴺ‫ޔ‬ၮᐩ⁁ᘒߩࠛࡀ࡞ࠡ࡯ߩᲧセ
ߥߤߦࠃߞߡ⸘▚ߔࠆ‫ޕ‬
56
Oral 11/29/A05
૧‫ܗ‬ൾॸ‫ا‬໤͈ܴൽಉ੬͂ঽ଻͈ၑაٜଢ଼̤͍͢໤ৗ୭ࠗ
⢫
ᥙ㧔‛᧚ᯏ᭴㧕
ᦨㄭวᚑߐࠇߚᣂⷙࡍࡠࡉࠬࠞࠗ࠻㌃㉄ൻ‛ Sr8CaRe3Cu4O24 ߪ‫✼⛘࠻࠶ࡕޔ‬૕ߢ޽ࠅ‫ޔ‬㜞޿⏛᳇ォ⒖᷷ᐲ Tc=440K
ࠍ␜ߔ‫ߦߢ߹੹ߪࠇߎޕ‬⍮ࠄࠇߡ޿ߚ㌃㉄ൻ‛ᒝ⏛ᕈ૕ߦᲧߴߡච୚એ਄ߦ㜞޿‫ޔߪߜߚ⑳ޕ‬ኒᐲ᳢㑐ᢙ
LSDA+U⸘
▚ࠍⴕ޿‫゠ޔ‬㆏⒎ᐨߣࡈࠚ࡝⏛ᕈ᭴ㅧࠍ᣿ࠄ߆ߦߒߚ‫ޕ‬ኒᐲ᳢㑐ᢙᴺ⸘▚ߩ⚿ᨐߦၮߠ߈‫ߩ♽ޔ‬ૐࠛࡀ࡞ࠡ࡯ߢߩᝄࠆ⥰
޿ࠍ⸥ㅀߔࠆ⏛ᕈ᦭ലࡕ࠺࡞ߣߒߡ 3 ᰴరߩࠬࡇࡦ੤ᦧߒߚ㊂ሶࠬࡇࡦ♽ࠍឭ໒ߒ‫ޔ‬㊂ሶࡕࡦ࠹ࠞ࡞ࡠᴺߦࠃࠅታ㛎ߢ
᷹ⷰߐࠇߚ⏛᳇ォ⒖᷷ᐲ‫ࡠ࠯ޔ‬᷷ᐲ⏛ൻ╬ࠍ฽߻♽ߩ⏛᳇⊛ᝄࠆ⥰޿ࠍቯ㊂⊛ߦ⺑᣿ߔࠆߎߣ߇ߢ߈ߚ‫ޕ‬ᰴߩࠬ࠹࠶ࡊߣ
ߒߡ‫ޔ‬ర⚛⟎឵ߦࠃࠆᣂⷙ⏛ᕈ‛⾰ߩℂ⺰⸳⸘ࠍ⹜ߺߚ‫ޕ‬W ߿ Mo ߢ Re ࠍ⟎឵ߔࠇ߫‫߇࡞ࡀࡦࡖ࠴ࡊ࠶ࠕࡦࡇࠬޔ‬㊄ዻ
⊛ߢࠬࡇࡦ࠳࠙ࡦ࠴ࡖࡦࡀ࡞߇⛘✼⊛ߢ޽ࠆࡂ࡯ࡈࡔ࠲࡞ᒝ⏛ᕈ૕ߦߥࠆߎߣ߇᣿ࠄ߆ߦߥߞߚ‫ᦨޕ‬ㄭ‫⟎ޔ‬឵ర⚛߿࠼࡯
ࡊ㊂ߦࠃߞߡ‫⏛ߥࡠࠢࡑޔ‬ᕈࠍᜬߚߥ޿ࡂ࡯ࡈࡔ࠲࡞‫࡞࠲ࡔࡈ࡯ࡂࠆࠁࠊ޿ޔ‬෻ᒝ⏛ᕈ߽ታ⃻น⢻ߢ޽ࠆ߇ಽ߆ߞߚ‫ޕ‬
४ࣉ໲ࡃ!
[1] E. Takayama-Muromachi et al. J. Solid State Chem. 175, 366 (2003).
[2] X.-G. Wan, M. Kohno and X. Hu, Phys. Rev. Lett. 94, 087205 (2005).
[3] M. Kohno, X.-G. Wan and X. Hu J. Phys. Soc. Jpn. Suppl. 74, 98 (2005).
[4] X.-G. Wan, M. Kohno and X. Hu, Phys. Rev. Lett. 95, 146602 (2005).
Oral 11/29/A06
2 ষࡓၾঊ฽‫ޑ‬ঽ଻ఘ̤̫ͥͅͼϋΑΗϋΠϋ
ᩉᴛ
ቁ㧔↥✚⎇㧕
2 ᰴర෻ᒝ⏛ᕈ૕ߪㅪ⛯ᭂ㒢ࠍߣࠆߣ
2+1ᰴర㕖✢ဳࠪࠣࡑࡕ࠺࡞ߦࡑ࠶ࡊߐࠇࠆ‫ޕ‬2 ᰴరߩ㕖✢ဳࠪࠣࡑࡕ࠺࡞߅
ߌࠆࠗࡦࠬ࠲ࡦ࠻ࡦ⸃ߪ Fateev ࠄߦࠃߞߡ⺞ߴࠄࠇ‫ࡦ࠻ࡦ࠲ࠬࡦࠗޔ‬㑆ߦኻᢙ⊛ߥ⋧੕૞↪߇௛ߊߎߣ߇␜ߐࠇߡ޿ࠆ‫ޕ‬
ߎࠇߪᱜ⽶ߩ㔚⩄ߩ☸ሶ㑆ߦኻᢙ⊛ߥ⋧੕૞↪߇௛ߊࠢ࡯ࡠࡦࠟࠬࡕ࠺࡞ߣ╬ଔߢ޽ࠆ‫ߩ⸃ࡦ࠻ࡦ࠲ࠬࡦࠗޔߪߢߎߎޕ‬
ᤨ㑆ଐሽᕈࠍ⠨ኤߔࠆ‫ߩࡦ࠻ࡦ࠲ࠬࡦࠗ࠴ࡦࠕߣࡦ࠻ࡦ࠲ࠬࡦࠗޕ‬૏⟎ࠍ⴫ࠊߔᄌᢙ߇ᤨ㑆ߦଐሽߔࠆᤨߩㆇേᣇ⒟ᑼࠍ
⠨ኤߔࠆߣ‫ࡦ࠻ࡦ࠲ࠬࡦࠗޔ‬ኻߩ㑆ߩ〒㔌߇ᤨ㑆ߦଐሽߒߡᝄേߔࠆߎߣ߇ࠊ߆ࠆ‫ޕ‬
Oral 11/29/A07
ະ੗໤ညܳ฽‫ޑ‬ঽ଻ಉ੬ȇδϋΡ‫ܛ‬৷ࠏ̤̫ͥͅ‫̳ࣣͥއ‬
ඵ͈̾ခ࢘௖ࡽैဥ
቟↰ ජኼ㧔㕍ቇᄢℂᎿ㧕
㊂ሶំࠄ߉ߩߚ߼ࠬࡇࡦࠡࡖ࠶ࡊࠍ઻߁㕖⏛ᕈߥၮᐩ⁁ᘒࠍ᦭ߔࠆᡆૐᰴర෻ᒝ⏛ᕈ૕‫ࠬ࡞ࠛࠗࡄ࡮ࡦࡇࠬޔ߫߃଀ޔ‬
‛⾰߿ࡂ࡞࠺ࡦ‛⾰ߦਇ⚐‛ࠍ࠼࡯ࡊߔࠆߣ‫ޔ‬෻ᒝ⏛ᕈ㐳〒㔌⒎ᐨ
AFLRO߇⺃⿠ߐࠇࠆ‫ޔߪࠇߎޕ‬㕖⏛ᕈ⁁ᘒࠍᜂ߁
ࠬࡇࡦ৻㊀㗄ኻࠍਇ⚐‛߇უߔߎߣߦࠃࠅਇ⚐‛ߩ߹ࠊࠅߦ⏛᳇ࡕ࡯ࡔࡦ࠻
᦭ലࠬࡇࡦ߇⺃⿠ߒ‫৻ߩࠅࠊ߹߇ࠄࠇߘޔ‬
㊀㗄ኻࠍᇦ੺ߦߒߡ⋧㑐ߔࠆߎߣߦࠃࠅ↢ߓࠆ⒎ᐨߣℂ⸃ߐࠇࠆ‫⻠ᧄޕ‬Ṷߢߪ‫࠼ࡦࡏޔ‬੤ᦧ㎮߇ੑᰴర⊛ߦ⚿วߒߚ෻ᒝ
⏛ᕈࡂࠗ࠯ࡦࡌ࡞ࠢᮨဳߩ㕖⏛ᕈ⁁ᘒߦ߅ߌࠆ‫࠻ࠗࠨޟ‬Ꮧ㉼‫࠼ࡦࡏޟߣޠ‬Ꮧ㉼‫ߩޠ‬ലᨐߩ㆑޿ߦ⌕⋡ߔࠆ‫ࠗࠨޔ߫߃଀ޕ‬
࠻Ꮧ㉼ߔࠆߣή㒢ዊߩᏗ㉼Ớᐲߢ AFLRO ߇⺃⿠ߔࠆߩߦኻߒ‫࠼ࡦࡏޔ‬Ꮧ㉼♽ߢߪ‫᦭ࠆ޽ޔ‬㒢ߩỚᐲ߹ߢ⺃⿠ߐࠇߥ޿‫ޕ‬
ᧄ⻠Ṷߢߪ‫ߩߘޔ‬㆑޿߇᦭ലࠬࡇࡦ㑆ߦ௛ߊੑߟߩ᦭ല⋧੕૞↪ߩ┹วߩࡔࠞ࠾࠭ࡓߦࠃࠅℂ⸃ߢ߈ࠆߎߣࠍ␜ߒ‫߽੹ޔ‬
ታ㛎࡮ℂ⺰ਔ㕙ߢ⎇ⓥ߇⛯ߊ‫ޟ‬ਇ⚐‛⺃⿠෻ᒝ⏛ᕈ⒎ᐨ‫ߩޠ‬㝯ജߩ৻┵ࠍ⚫੺ߒߚ޿‫ޕ‬
57
Oral 11/29/A08
Wilson ߿৘ߗ‫߲͙̭̩͂ͤۼ‬ၾঊΑάϋङ͈
೩΀ΥσΆȜ႗ܳΑβ·Πσ
ᅏ⷏ Ꮑ৻㧔ᣂẟᄢ⥄ὼ㧕
1 ᰴర㊂ሶ♽ߢኒᐲⴕ೉ߊࠅߎߺ⟲
DMRG߇ᚑഞࠍ⚊߼ߡ޿ࠆߩߢ‫ޔ‬ታⓨ㑆ߊࠅߎߺ⟲ߪା㗬ᕈߩ޽ࠆᚻᴺߣ޿߁
ࠗࡔ࡯ࠫ߇ቯ⌕ߒߡ޿ࠆ߇‫ޔ‬DMRG એ೨ߪోߊߘ߁ߢߪߥ߆ߞߚ‫ࡦࡇࠬࠢ࠶ࡠࡉޕ‬ᄌ឵ߥߤߩᚻᴺߪ‫ޔ‬1 ᰴర㊂ሶ♽ߢ
ߪቯᕈ⊛߽⺋ߞߚ⚿ᨐࠍߛߔߎߣ߽ᄙ߆ߞߚ‫৻ޕ‬ᣇ‫ޔ‬ㄭ⮮໧㗴ߦ↪޿ࠄࠇߚ Wilson ߩߊࠅߎߺ⟲ߪ‫ޔ‬᭽‫ߥޘ‬ਇ⚐ಽ‛໧
㗴ߢ♖ᐲࠃߊૐࠛࡀ࡞ࠡ࡯ബ⿠ࠍ⸘▚ߔࠆᚻᴺߣߒߡᆭജࠍ⊒ើߒߡ޿ࠆ‫ޔߚ߹ޕ‬DMRG ߣ⇣ߥࠅࠡࡖ࠶ࡊ࡟ࠬߩ♽ߢ
᦭ലߢ޽ࠆ‫ޔߢߎߘޕ‬DMRG ߪ߭ߣ߹ߕ㔌ࠇߡ‫ޔ‬ਇ⚐‛໧㗴ߩ Wilson ߊࠅߎߺ⟲ࠍᡷ⦟ߔࠇ߫‫ ࠈߒ߻ޔ‬1 ᰴర㊂ሶ♽
ߢ߽ା㗬ߢ߈ࠆᱜ⛔ᵷታⓨ㑆ߊࠅߎߺ⟲߇૞ࠇࠆߩߢߪߥ޿߆ߣ⠨߃‫ޔߪߢߎߎޔ‬ਇ⚐‛໧㗴 Wilson ߊࠅߎߺ⟲ࠍౣ⠨
᜛ᒛߒ‫ࠬ࡟ࡊ࠶ࡖࠡޔ‬㗔ၞߩ XXZ ㎮߳ㆡᔕߒߚ႐วߩ⚿ᨐߣ‫ޕࠆߔ⴫⊒ߡ޿ߟߦ㉼⸃ߩߘޔ‬
Oral 11/29/A09
ΑάϋΙνȜή͈ၾঊ௖ഢ֊
ဈ੗
ᔀ㧔ේሶജᯏ᭴㧕
3 ᧄ㎮ࠬࡇࡦ࡜࠳࡯ߪࠬࡇࡦࠡࡖ࠶ࡊ߇ሽ࿷ߒߥ޿ߎߣ߇⍮ࠄࠇߡ޿ࠆ߇‫ࠍࠇߎޔ‬㎮㑆ᣇะߦ߽๟ᦼ⊛ߦߟߥ޿ߛ 3 ᧄ
㎮ࠬࡇࡦ࠴ࡘ࡯ࡉߢߪࠬࡇࡦࠡࡖ࠶ࡊ߇ሽ࿷ߔࠆ‫ߩߎޕ‬ਔ⠪ࠍߟߥߋ㊂ሶ⋧ォ⒖ߦߟ޿ߡ‫ޔ‬ᢙ୯⊛ߦ⸃ᨆߒߚ⚿ᨐࠍႎ๔
ߒ‫੹ޔ‬ᓟߩㅴዷࠍ⼏⺰ߔࠆ‫ޕ‬
Oral 11/29/P01
ΧσΟϋࠏ͈໤ၑ͂ॼ̯̹ͦ‫ه‬ఴȪ৘ࡑȫ
⪤ේ ᡽ᐘ㧔㒋ᄢᭂ㒢࠮ࡦ࠲࡯㧕
1983 ᐕߩࡂ࡞࠺ࡦ੍ᗐએ᧪‫ޔ‬ታ㛎ℂ⺰ਔ㕙ߢ㕖Ᏹߦ♖ജ⊛ߥ⎇ⓥ߇ߥߐࠇߡ߈ߡ‫৻ޔ‬ᰴర෻ᒝ⏛ᕈ૕ߩ‛ℂߦ㑐ߒߡ
ߪᄢᣇߩℂ⸃߇ㅴࠎߢ޿ࠆ‫⏛ࠍࡊ࠶ࡖࠡࡦ࠺࡞ࡂޔࠄ߇ߥߒ߆ߒޕ‬႐߿࿶ജߢߟ߱ߒߚᓟߩ⏛႐⺃⿠⋧ߦ㑐ߒߡߪ⃻࿷߽
⎇ⓥ߇ㅴ߼ࠄࠇߡ޿ࠆ‫⁁ߥ߁ࠃߩߎޕ‬ᴫߩਛ‫࠼ࡦࡏ
♽ࡦ࠺࡞ࡂޔ‬੤ᦧ♽߽฽߻ߦ߅޿ߡߎࠇ߹ߢߩ⎇ⓥࠍ᭎ⷰߒߚᓟ‫ޔ‬
⻠Ṷ⠪߇⃻࿷ㅴ߼ߡ޿ࠆ⎇ⓥࠍ⚫੺ߒᱷߐࠇߚ⺖㗴ߦ㑐ߒߡෳട⠪ߣ౒ߦ⼏⺰ߒߚ޿‫ޕ‬
Oral 11/29/P02
ΧσΟϋࠏ͈໤ၑ͂ॼ̯̹ͦ‫ه‬ఴȪၑაȫ
㊁᧛ ᷡ⧷㧔਻Ꮊᄢℂ㧕
ࡂ࡞࠺ࡦ♽ߩℂ⺰⊛஥㕙ߦߟ޿ߡ࡟ࡆࡘ࡯ߔࠆ‫ ߦߊߣޕ‬S=1 bilinear-biquadratic (BLBQ)ࠬࡇࡦ㎮ߦߪ‫ޔ‬AKLT,
Takhtajan-Babujan, Uimin-Lai-Sutherland ߥߤ෩ኒ⸃߇޽ࠆ‫ޕ‬෩ኒ⸃ߩ๟ㄝߢߩ‛ℂ⃻⽎ߦߟ޿ߡ➅ࠅㄟߺ⟲‫ࡌ࡟ޔ‬
࡞ࠬࡍࠢ࠻ࡠࠬࠦࡇ࡯‫ޔ‬ᢛว㧙㕖ᢛวㆫ⒖ߥߤߦࠃࠅℂ⸃߇ㅴࠎߢ߈ߚߩߢ⚫੺ߔࠆ‫ޕ‬
58
Oral 11/29/P03
΢Φߗ‫ͅۼ‬෻Ⴅ̱̹ॸள໦ঊङ͈‫ޑ‬ঽાঽ‫ًا‬೾
᧻የ
᥏㧔᧲ᄢ‛ᕈ⎇㧕
࠽ࡁ࡮ࠨࠗ࠭ߩ࠴ࡖࡦࡀ࡞ࠍᜬߟᄙሹᕈ㈩૏㜞ಽሶߦ‫╬ޔ‬ᩭੑේሶಽሶߦ㒢ࠇ߫໑৻⏛ᕈࠍ␜ߔ㉄⚛ಽሶ
ࠬࡇࡦ 1ࠍ
‛ℂๆ⌕ߐߖࠆߎߣߢ㉄⚛ಽሶ㎮ࠍ૞ࠅ‫ߩߘޔ‬ૐᰴర‛⾰ߩ⏛ᕈࠍ⺞ߴߡ޿ࠆ‫ޕ‬ᄙሹᕈ㈩૏㜞ಽሶߪ‫ޔ‬㊄ዻ㍲૕ߩ 2 ᰴ
రࠪ࡯࠻ߣ‫ࠍࠇߘޔ‬ㅪ⚿ߔࠆ᨞ᯅಽሶ߆ࠄᚑߞߡ޿ࠆ‫߫߃ߣߚޕ‬᨞ᯅಽሶࠍᦧ߃ࠆߎߣߢ࠴ࡖࡦࡀ࡞ߩ㑆ญߩᄢ߈ߐࠍᄌ
߃ࠆߎߣ߇ߢ߈ࠆ‫ߥ⊛ဳౖޕ‬ᄙሹᕈ㈩૏㜞ಽሶߪㅢ⒓ CPL1 ߣ๭߫ࠇ‫⚦ߩߘޔ‬ሹߩࠨࠗ࠭ߪ 4Έ˜6Έߢ޽ࠅ‫⚛㉄ޔ‬ಽሶ
ߪ⚂ 160K એਅߢๆ⌕ߒ‫࡞ࡀࡦࡖ࠴ߩߟ৻ޔ‬ౝߦ 2 ೉ߢਗ߱‫⚛㉄ࠅ߹ߟޕ‬ಽሶߩ࡜࠳࡯᭴ㅧ߇ᒻᚑߐࠇߡ޿ࠆߎߣߦߥ
ࠆ‫࡯࠳࡜ޕ‬᭴ㅧࠍ૞ࠆ㉄⚛ಽሶ㎮ߪ⋡⊛ߤ߅ࠅૐᰴర⏛ᕈ૕ߩࠃ߁ߥᝄࠆ⥰޿ࠍ␜ߒߚ‫߽ߦઁޕ‬ᐞߟ߆ߩᄙሹᕈ㈩૏㜞ಽ
ሶߦ㉄⚛ಽሶࠍๆ⌕ߐߖߘߩ⏛ᕈࠍ⺞ߴߡ޿ࠆ‫ޕ‬
Oral 11/29/P04
௰ङ͈̜ͥၾঊΑάϋङ͈‫ܖ‬ೲેఠ
㜞㊁ ஜ৻㧔⼾↰Ꮏᄢ㧕
஥㎮ߩ޽ࠆ㊂ሶࠬࡇࡦ㎮ߦߪ޿ࠈ޿ࠈߥࡃ࡝ࠛ࡯࡚ࠪࡦ߇޽ࠅ‫ߥࠈ޿ࠈ޿ޔ‬ၮᐩ⁁ᘒ߇ᦼᓙߢ߈ࠆ‫ޕ‬ታ㓙ߩ‛⾰ߢ⊒⷗
ߐࠇࠆᦼᓙ߽޽ࠆ‫ߛ߹ޔߒ߆ߒޕ‬චಽߥ⎇ⓥߪᚑߐࠇߡ߅ࠄߕ‫◲ޔ‬නߥ႐ว߆ࠄ⎇ⓥࠍᆎ߼ࠆᗧ⟵߇޽ࠆ‫ࠬޔߪߢߎߎޕ‬
ࡇࡦ㎮ߩ 1 ߟ߅߈ߩࠨࠗ࠻ߦ‫ޔ‬஥㎮ߣߒߡ 1 ߟߩࠬࡇࡦ߇ઃዻߒߡ߅ࠅ‫⏛࡝ࠚࡈޔ‬ᕈߦߥࠄߥ޿႐วࠍ⺞ߴࠆ‫ޔߕ߹ޕ‬1
ᰴరᷙว㊂ሶࠬࡇࡦ♽ߦኻߔࠆ㕖✢ᒻࠪࠣࡑᮨဳߩᣇᴺࠍ஥㎮߇޽ࠆ႐วߦ᜛ᒛߔࠆ‫ޔߡߞࠃߦࠇߎޕ‬ၮᐩ⁁ᘒߩ⋧࿑ߩ
᭎⇛ࠍ᳞߼ࠆ‫ޕ‬ᢙ୯⊛ኻⷺൻߩᣇᴺߦࠃߞߡ߽⋧࿑ࠍ᳞߼ߡᲧセߔࠆ‫⚿ޕ‬ᨐߪ‫ޔ‬஥㎮ߣߩ੤឵⋧੕૞↪ߩᒝߐߥߤߦᔕߓ
ߡ‫ ࠆ޽ߩࡊ࠶ࡖࠡޔ‬2 ߟߩ⋧߇⷗޿ߛߐࠇߚ‫ޕ‬ฦ⋧ߩ․ᓽࠍᬌ⸛ߔࠆ‫ޕ‬
Oral 11/29/P05
ࣞষࡓ͈ AKLT ຝ௨̷͈͂ા͈ၑა
↰ਛ ⑺ᐢ㧔‛᧚ᯏ᭴㧕
VBS ឬ௝
AKLT ឬ௝ߪ৻ᰴర㊂ሶࠬࡇࡦ㎮ߩ‛ℂࠍℂ⸃ߔࠆ਄ߢᰳ߆ߖߥ޿‫ߪࠇߎߚ߹ޕ‬㕖✢ᒻσ ᮨဳ߿౒ᒻ႐ߦ
ࠃࠆ႐ߩℂ⺰⊛⸥ㅀߣ߽⦟ߊኻᔕ߇ขࠇߡ߅ࠅ‫ޔ‬ਔ⠪ߪ 80 ᐕઍ߆ࠄ 90 ᐕઍߦ߆ߌߡߩࡂ࡞࠺ࠗࡦࠡࡖ࠶ࡊ๟ㄝߩ‛ℂ
ߩㅴዷߦਛᔃ⊛ߥᓎഀࠍᜂߞߚ‫ޕ‬ㄭᐕ‫ޔ‬ੑᰴర‫ޔ‬ਃᰴరߦ߅ߌࠆ㊂ሶࠬࡇࡦᶧ૕߿ࠬࡇࡦ♽ߩ㊂ሶ⥃⇇⃻⽎ߦ㑐ㅪߒߡౣ
߮ߎߩੑߟߩࠕࡊࡠ࡯࠴߇㗫಴ߔࠆࠃ߁ߦߥߞߚ‫ޕ‬ᣂߒ޿࠲ࠗࡊߩ㊂ሶ⋧ォ⒖ߣߐࠇࠆ Senthil ╬ߦࠃࠆ deconfined
criticality ߪߎߩࠃ߁ߥേ߈ߩ৻଀ߢ޽ࠆ‫⻠ᧄޕ‬Ṷߢߪ‫ߥ߁ࠃߩߎޔ‬㜞ᰴర㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆ AKLT ឬ௝ࠍ⸥ㅀߔ
ࠆߩߦㆡߒߚ႐ߩℂ⺰⊛ߥᨒ⚵ߺࠍ‫ޔ‬ᚒ‫ᦨߩޘ‬ㄭߩ⎇ⓥ
PRL95 (2005) 036402, PRB 2006 inpress‫ߦߣ߽ࠍ╬ޔ‬ឭ⿠ߒ‫ޔ‬
྾ⷺᩰሶ♽‫ࡓࠞ࠾ࡂޔ‬ᩰሶ♽‫ߦߤߥ♽࡯࠳࡜ߚߒ࠻࡯࡟࠻ࠬ࡜ࡈޔ‬ㆡ↪ߔࠆ‫ߦࠄߐޕ‬ㄭᐕᵈ⋡ߐࠇߡ޿ࠆ࠻ࡐࡠࠫࠞ࡞⒎
ᐨߦߟ޿ߡ‫ߩߎޔ‬ᨒ⚵߆ࠄ⼏⺰ࠍ⹜ߺࠆ‫ޕ‬
Oral 11/29/P06
ၾঊΑάϋࠏ͈ ESR ͥ͢ͅࡄ‫ݪ‬
ᄥ↰
ੳ㧔␹ᚭᄢℂ㧕
ࡑࠣࡁࡦߩ BEC‫⏛ޔ‬ൻࡊ࡜࠻࡯‫ߤߥ♽ࡦ࠺࡞ࡂޔ♽ࡦ࡚ࠪ࡯࡟࠻ࠬ࡜ࡈޔ‬㊂ሶࠬࡇࡦ♽ߩ⎇ⓥߦ߅޿ߡᒝ⏛႐ ESR ߪ
ᄢ߈ߥᓎഀࠍᨐߚߒߡ߈ߚ‫ߩ♽ߥ߁ࠃߩߎߢߎߘޕ‬ᒝ⏛႐ ESR ᷹ቯࠍ᭎ⷰߒ‫ޔ‬ᱷߐࠇߚ໧㗴ߦߟ޿ߡ⼏⺰ߒߚ޿‫ޕ‬
59
Oral 11/29/P07
5 ུ௷Αάϋ೺ঊ‫ڒ‬ঊࠏ La8Cu7O19 ͂ΧσΟϋΆλΛίࠏ Y2BaNiO5
̤̫ͥͅΑάϋͥ͢ͅ෎ഥ൵
Ꮉ⢆ 㓉ⴕ 1‫ޔ‬ዊᳰ ᵗੑ 2‫ޔ‬ችፉ ␭৻ 2‫ޔ‬㊁࿾ ዏ 2‫ޔ‬Ꮏ⮮ ৻⾆ 3‫ޔ‬ዊᨋ ౖ↵ 3
1 ℂ⎇‫ޔ‬2 ᧲ർᄢᎿ‫ޔ‬3 ᧲ർᄢ㊄⎇
᭽‫ߥޘ‬ૐᰴర㊂ሶࠬࡇࡦ♽ߩ‛⾰ߦ߅޿ߡ‫ࠆࠃߦࡦࡇࠬޔ‬ᄢ߈ߥᾲવዉ߇᷹ⷰߐࠇ‫ޔ‬ᵈ⋡ߐࠇߡ޿ࠆ‫ࡇࠬޔ߫߃ߣߚޕ‬
ࡦ㊂ሶᢙ S=1/2 ߩ 1 ᰴరࠬࡇࡦ㎮ࠍᜬߟ Sr2CuO3 ߿ 2 ᧄ⿷ࠬࡇࡦ᪽ሶᩰሶࠍ߽ߟ Sr14Cu24O41 ߢߪ‫ޔ‬ᄢ߈ߥࠬࡇࡦߦࠃ
ࠆᾲવዉ߇ႎ๔ߐࠇߡ޿ࠆ‫ޔߒ߆ߒޕ‬᪽ሶߩ⿷ᢙ߇ᄙ޿႐ว߿ S ߇ᢛᢙߢ޽ࠆࡂ࡞࠺ࡦࠡࡖ࠶ࡊ♽ߦ߅ߌࠆႎ๔଀ߪ߶ߣࠎ
ߤߥ޿‫ޔ߼ߚߩߘޕ‬5 ᧄ⿷ࠬࡇࡦ᪽ሶᩰሶ♽ La8Cu7O19 ߣࡂ࡞࠺ࡦࠡࡖ࠶ࡊ♽ Y2BaNiO5 ߦ߅޿ߡ‫ޔ‬ᾲવዉࠍ᷹ቯߒߚ‫ޕ‬
ߘߩ⚿ᨐ‫ޔ‬La8Cu7O19 ߦ߅޿ߡߪ‫ࠆࠃߦࡦࡇࠬޔ‬ᾲવዉߪ᷹ⷰߐࠇߥ߆ߞߚ‫ߩߘޕ‬ℂ↱ߪ‫ޔ‬᪽ሶߩ⿷ᢙߩലᨐࠃࠅ߽᪽
ሶᩰሶ㑆ߦᄢ߈ߥ⋧੕૞↪߇ሽ࿷ߔࠆߚ߼ߣ⠨߃ࠄࠇࠆ‫৻ޕ‬ᣇ‫ޔ‬Y2BaNiO5 ߦ߅޿ߡߪ‫ޔ‬ᄢ߈ߥࠬࡇࡦߦࠃࠆᾲવዉ߇ⷰ
᷹ߐࠇߚ‫ޕ‬S=1/2 ߩ♽ߣห᭽ߦ‫ࡦࡇࠬޔ‬㎮ౝߩ੤឵⋧੕૞↪ߦᲧ଀ߒߡᾲવዉ߇Ⴧᄢߒߡ޿ࠆน⢻ᕈ߇޽ࠆ‫ޕ‬
Oral 11/29/P08
ΑάϋρΘȜ‫ࣣا‬໤(CPA)2CuBr4 ͈ࣞਔ෨ ESR ௶೰
శ⮮ ⺈ᄥ㇢㧔⑔੗ᄢ㆙⿒࠮㧕
(CPA)2CuBr4 ߪ ladder ᣇะߩ⋧੕૞↪ߩᣇ߇ rung ᣇะࠃࠅ߽ᒝ޿ೋ߼ߡߩ S=1/2 ෻ᒝ⏛ᕈࠬࡇࡦ࡜࠳࡯ࡕ࠺࡞ൻว
‛ߣߐࠇߡ޿ࠆ‫ޔߚ߹ޕ‬NMR ᷹ቯ߆ࠄᦺ᳗Luttinger ᶧ૕
TLLߢ⸥ㅀߐࠇࠆࡊࡠ࠻ࡦߩ✭๺₸ߩߴ߈⊛ᝄࠆ⥰޿߿⏛
ൻ᷹ቯ߆ࠄૐ᷷ߢࠡࡖ࠶ࡊࠍᜬߟߎߣ߇ႎ๔ߐࠇߡ޿ࠆ‫ޕ‬਄⸥ߩࠃ߁ߦ‫ޔ‬ੑ⿷࡜࠳࡯♽ߩ․ᓽࠍ␜ߔ৻ᣇ‫ޔ‬ᚒ‫ߩޘ‬㜞๟ᵄ
ESR ᷹ቯ߆ࠄߪ Cu-benzoate ߩ Breather ࡕ࡯࠼ߦ㘃ૃߒߚᝄࠆ⥰޿߽᷹ⷰߐࠇߚ‫⻠ޕ‬Ṷߢߪ‫⎇ߩߢ߹ࠇߎޔ‬ⓥ⚿ᨐߣ
ߣ߽ߦ‫৻ޔ‬ᰴర♽ߩ⏛႐⺃⿠ࠡࡖ࠶ࡊߣ(CPA)2CuBr4 ߢ᷹ⷰߐࠇߚ․⇣ߥ ESR ࠬࡍࠢ࠻࡞ߩᝄࠆ⥰޿ߦߟ޿ߡᲧセߒߥ
߇ࠄႎ๔ࠍⴕ߁‫ޕ‬
Oral 11/29/P09
ΑάϋρΘȜ‫ࣣا‬໤ (CPA)2CuBr4 ͈‫ړ‬ঽ‫ྺވܨ‬
⮮੗
⵨㧔⑔੗ᄢ㆙⿒࠮㧕
(CPA)2CuBr4 ߪ ladder ᣇะߩ⋧੕૞↪ߩᣇ߇ rung ᣇะࠃࠅ߽ᒝ޿ೋ߼ߡߩ S=1/2 ᒝ⏛ᕈࠬࡇࡦ࡜࠳࡯ࡕ࠺࡞ൻว‛
ߣߐࠇߡ޿ࠆ‫ޕ‬ladder ᣇะߩ⋧੕૞↪߇ᒝ޿ߚ߼ߦ⋧੕૞↪ߩᄢ߈ߐߦᲧߴߡࠬࡇࡦࠡࡖ࠶ࡊߩᄢ߈ߐ
⚂ 2 K߇ዊߐ
ߊߥࠅ‫⏛ޔ‬႐ශടߦࠃߞߡ⏛႐⺃⿠⥃⇇⁁ᘒߩᝄࠆ⥰޿ࠍ⺞ߴࠆߩߦㆡߒߡ޿ࠆ‫ޕ‬ᚒ‫ ߢ߹ࠇߎߪޘ‬0.4 K ߹ߢߩ᷷ᐲၞߢ‫ޔ‬
⚂ 8 T ߹ߢߩ⥃⇇⏛႐㗔ၞߦ߅޿ߡ‫ᦺޔ‬᳗Luttinger ᶧ૕
TLLߢ⸥ㅀߐࠇࠆࡊࡠ࠻ࡦߩ✭๺₸ߩߴ߈⊛ᝄࠆ⥰޿ࠍⷰ
᷹ߒߚ‫ᦨޔߚ߹ޕ‬ㄭߩ ESR ᷹ቯ߆ࠄ Cubenzoate ߩ Breather ࡕ࡯࠼ߦ㘃ૃߒߚᝄࠆ⥰޿߽᷹ⷰߐࠇ‫ޔ‬ᵈ⋡ߐࠇߡ޿ࠆ‫ޕ‬
⻠Ṷߢߪ‫⎇ߩߢ߹ࠇߎޔ‬ⓥ⚿ᨐߣߣ߽ߦ‫ޔ‬TLL 㗔ၞࠃࠅ߽ૐ᷷ߢ✭๺₸߇ᕆỗߦᷫዋߔࠆᝄࠆ⥰޿ߦߟ޿ߡ‫ߩ߆߶ޔ‬
ࠡࡖ࠶ࡊ♽ߢߩ᷹ⷰ⚿ᨐߣᲧセߒߡㅀߴࠆ੍ቯߢ޽ࠆ‫ޕ‬
Oral 11/29/P10
‫ڐ‬ಫ̯̹ͦ 4 ఘ௖ࡽैဥͬ̾͜ 2 ུङ೺ঊΑάϋࠏ̤̫ͥͅ஼చ་۟
ᒁේ ବ຦㧔ർᄢℂ㧕
᜛ᒛߐࠇߚ 4 ૕⋧੕૞↪ࠍ߽ߟ 2 ᧄ㎮᪽ሶࠬࡇࡦ♽ߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬ᚒ‫ࡦࡇࠬޔߡ޿߅ߦ♽ߩߎޔߦߢ߹ࠇߎߪޘ‬
⥄↱ᐲߣࠞࠗ࡜࡝࠹ࠖ⥄↱ᐲࠍ౉ࠇᦧ߃ࠆ෺ኻᄌ឵߇ᚑࠅ┙ߟߎߣࠍ␜ߒߡ޿ࠆ[T. Hikihara, T. Momoi, and X. Hu,
Phys. Rev. Lett. 90, 087204 (2003)]‫੹ޕ‬࿁ᚒ‫ߩߟ৻߁߽ޔߡ޿߅ߦ♽ߩߎޔߪޘ‬ᣂߒ޿෺ኻᄌ឵߇ᚑࠅ┙ߟߎߣࠍ⊒⷗
60
ߒߚߩߢ‫ߡ޿ߟߦࠇߘޔ‬ႎ๔ߔࠆ‫ࠄࠇߘޔߚ߹ޕ‬ੑߟߩ෺ኻᄌ឵߆ࠄዉ߆ࠇࠆ‫ޔ‬᭽‫ߥޘ‬⒎ᐨࡄ࡜ࡔ࡯࠲㑆ߩ෺ኻᕈ‫ࠃ߅ޔ‬
߮‫࠲࡯ࡔ࡜ࡄ࡮࡞࠺ࡕޔ‬ⓨ㑆ߦ߅ߌࠆ෺ኻᄌ឵ߩ᭴ㅧߦߟ޿ߡㅀߴࠆ‫⚿ߩߘޔߦࠄߐޕ‬ᨐߩㆡ↪଀ߣߒߡ‫ޔ‬4 ࠬࡇࡦᓴⅣ
⋧੕૞↪ࠍ߽ߟ 2 ᧄ㎮᪽ሶ♽ߩၮᐩ⁁ᘒ⏛႐⋧࿑ߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬
Oral 11/29/P11
༊ޭಎ଻ঊͬဥ̞̹ TbMnO3 ͈ঽ‫ࢹܨ‬௮ͅ‫ݪࡄ̳ͥ۾‬
᧻↰ 㓷᣽‫ޔ‬᫃ᧄ ੫৻‫ޔ‬ᱞ↰ ోᐽ‫ޔ‬ടୖ੗ ๺ਭ‫ޔ‬ਃ੗ ↱૫೑ 1‫ޔ‬ศỈ ⧷᮸ 1‫ ᧛ᧁޔ‬೰ 2‫ޔ‬චୖ ᅢ♿ 3
㧔ේሶജᯏ᭴‫ޔ‬1 ᧲ᄢ‛ᕈ⎇‫ޔ‬2Bell ⎇‫ޔ‬3 ᧲ᄢᎿ㧕
TbMnO3 ߪૐ᷷ߢᒝ⺃㔚ᕈߣ෻ᒝ⏛ᕈ߇౒ሽߔࠆࡑ࡞࠴ࡈࠚࡠࠗ࠶ࠢ‛⾰ߩ৻⒳ߢ޽ࠆ‫⎇ߩߢ߹ࠇߎޕ‬ⓥߦࠃࠆߣ‫ޔ‬
TN=42K ߢ SDW ⒎ᐨ
ࠦ࡝࠾ࠕ࡯᭴ㅧࠍ␜ߒ‫ޔ‬Tc=28K એਅߢᬦ౞ࠬࡄࠗ࡜࡞ࠬࡇࡦ᭴ㅧࠍ␜ߔߎߣ߇␜ߐࠇߡ޿ࠆ‫ޕ‬
߹ߚ‫ޔ‬ᒝ⺃㔚ᕈߪ Tc એਅߢ⊒㆐ߔࠆ‫ޕ‬
஍ᭂਛᕈሶߪ⏛ᕈ૕ਛߩ⏛᳇ࡕ࡯ࡔࡦ࠻ߩᣇะࠍ⹦⚦ߦ⺞ߴࠆߩߦ᦭↪ߢ޽ࠆ‫ᦨޔߦ․ޕ‬ㄭ㐿⊒߇ㅴࠎߢ޿ࠆਃᰴర஍
ᭂਛᕈሶ⸃ᨆᴺࠍ↪޿ࠆߎߣߦࠃࠅ‫ࡦࡇࠬ࡞࡜ࠗࡄࠬޔ‬᭴ㅧߦ㑐ߔࠆ⹦⚦ߥᖱႎࠍᓧࠆߎߣ߇಴᧪ࠆ‫ޕ‬ᚒ‫ޔߪޘ‬ਃᰴర஍
ᭂਛᕈሶ⸃ᨆᴺࠍ↪޿ߡ TbMnO3 ߩ⏛᳇᭴ㅧࠍ⹦⚦ߦ⺞ߴߚ‫⚿ߩߘޕ‬ᨐ‫⏛ޔ‬᳇᭴ㅧ߇ Tc એਅߢᓢ‫ ߦޘ‬SDW ᭴ㅧ
ኈᤃ
ゲߪ b ゲ‫࡞࡜ࠗࡄࠬࠄ߆⊛ࠣࡦࠫࠗޔ‬᭴ㅧ
ኈᤃ㕙ߪ bc ゲ‫ޔ‬XY ⊛ߦォ⒖ߔࠆߎߣ
c ᚑಽ߇᷷ᐲᷫዋߣߣ߽ߦᓢ‫ߦޘ‬
Ⴧടߔࠆ‫ޔ‬ᬦ౞ࠬࡄࠗ࡜࡞᭴ㅧߩਥゲ߇᷷ᐲᷫዋߣߣ߽ߦ b ゲ߆ࠄ࿁ォߔࠆߎߣ╬ࠍ␜ߒߚ‫ޕ‬
Oral 11/29/P12
Ψ΢ΐ;θॸ‫ا‬໤ࠏ̤̫ͥͅၾঊΑάϋ࢘‫ض‬
ዊ㊁↰ 㓷㊀㧔╳ᵄᄢᢙℂ㧕
ࡃ࠽ࠫ࠙ࡓ㉄ൻ‛♽ߪ㊂ሶലᨐߩᒝߊ⃻ࠇࠆ‛⾰ࠍᢙᄙߊ᦭ߔࠆ‫⚿ޕ‬᥏᭴ㅧߩ♖ኒ᳿ቯ߅ࠃ߮⒳‫‛ߩޘ‬ᕈ᷹ቯࠍㅢߒߡ
ᓧࠄࠇߚᦨㄭߩᚑᨐࠍ◲ẖߦ߹ߣ߼‫੹ޔ‬ᓟ⸃᣿ߐࠇࠆߴ߈ታ㛎⊛‫ޔ‬ℂ⺰⊛໧㗴ࠍࠃࠅᄙߊ฽߻♽ࠍ⚫੺ߔࠆ㧦1ࠬࡇࡀ
࡞ᩰሶ MV2O4 ߩᡆ 4 ㊂૕ࡕ࠺࡞ߣห᭽ߦ‫ޔ‬ਃⷺᩰሶ MVO2 ߩᏱ⏛ᕈ⋧ߦኻߒߡᡆ 3 ㊂૕ࡕ࠺࡞ࠍឭ᩺ߒ‫゠ޔ‬㆏⒎ᐨ໧㗴
ࠍ฽߼ߥ߇ࠄૐ᷷⒎ᐨ⋧߳ߩォ⒖ᯏ᭴ࠍᬌ⸛ߔࠆ‫ޕ‬2࡜࠳࡯ᩰሶ㑆ߦࠫࠣࠩࠣဳ⋧੕૞↪߇௛߈߁ࠆ࠻࡟࡝ࠬᩰሶ
MxV2O5 ߦ߅ߌࠆ࡜ࡦࠣ਄ 2 ㊂૕߅ࠃ߮ 1 ᰴర੤ᦧ㎮ဳ 2 ㊂૕‫ޔ‬ਗ߮ߦ㑐ㅪᩰሶ MVnO2n+1 ߦ߅ߌࠆᒝ⏛ᕈ
n = 1‫ޔ‬෻
ᒝ⏛ᕈ⋧
n = 3╬ߩ⒎ᐨ⋧ߦߟ޿ߡ⠨ኤߔࠆ‫ޕ‬3㊂ሶࠬࡇࡦലᨐࠍ␜ߔ‛⾰ߩਛߦߪ‫⚿ޔ‬᥏᭴ㅧ߿㔚ሶ㑆⋧੕૞↪ߦᔕ
ߓߡ 2 ᰴ㔚ᳰ߿ᾲ㔚ᄌ឵╬ߩᯏ⢻ࠍ᦭ߔࠆ߽ߩ߇޽ࠆ‫ߩࠄࠇߘޕ‬ਛ߆ࠄ M1+xV3O8 ߅ࠃ߮ⶄว⚿᥏ဳ CuxV4O11 ߩᕈ⾰ߦ
ߟ޿ߡ⚫੺ߔࠆ‫ޕ‬
A1
֚݀ষࡓ΋ΨσΠ‫ࣣا‬໤ BaCo2V2O8 ͈‫ޑ‬ঽાঽ଻
ᧁ᧛ ዏᰴ㇢㧔㒋ᄢᭂ㒢࠮ࡦ࠲࡯㧕
BaCo2V2O8 ߪ CO2+ ߇⏛ᕈࠍᜂ߁ᡆ৻ᰴర෻ᒝ⏛ᕈ૕ߢ‫ޔ‬㔖⏛႐ߢߪ 5.4K ߢ㐳〒㔌⒎ᐨߔࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ߇‫ޔ‬
⏛႐ࠍട߃ࠆߣ⏛႐⺃⿠ߦࠃࠆ⒎ᐨ-ή⒎ᐨォ⒖ࠍ␜ߔ‫⏛ߜࠊߥߔޕ‬ൻኈᤃゲߢ޽ࠆ c ゲᣇะߦ⏛႐ࠍട߃ࠆߣ 4T ઃㄭ
ߢ⏛᳇ォ⒖߇↢ߓࠆ߇‫ߩߎޔ‬ォ⒖⏛႐એ਄ߢ⏛᳇⒎ᐨ߇ᶖᄬߔࠆߎߣ߇ᦨㄭߩ 1.8K ߹ߢߩᲧᾲ᷹ቯߢ␜ߐࠇߚ‫ޕ‬ᚒ‫ߪޘ‬
ߎߩォ⒖ߩᯏ᭴ߦ㑐ߒߡ⍮⷗ࠍᓧࠆߚ߼‫ޔ‬55 T ߩࡄ࡞ࠬ⏛႐ࠍ↪޿ߚᒝ⏛႐⏛ൻߣ ESR ᷹ቯࠍⴕߞߚߩߢߘߩ⚿ᨐߦߟ
޿ߡ⊒⴫ߔࠆ‫ޕ‬᷹ቯ⚿ᨐߪ⒎ᐨή⒎ᐨォ⒖߇ S=1/2XXZ ෻ᒝ⏛ᕈ㎮ߩ㊂ሶ⋧ォ⒖ߣ㑐ଥߒߡ޿ࠆߎߣࠍ␜ໂߒߚ‫ޕ‬
61
A2
݀ 1 ষࡓ฽‫ޑ‬ঽ଻ΧͼΔϋασΈ࿅߿̤̫ͥͅङ‫ۼ‬໹޳ા߃য̷͈͂٨ၻ
ᩊፒ
ᓃ㧔᧲ᄢᎿ㧕
ᡆ 1 ᰴర෻ᒝ⏛ᕈ૕ߪ‫ ޔ‬ᒙ޿㎮㑆⋧੕૞↪ߩലᨐߦࠃࠅ‫ޔ‬ૐ᷷ߢ㐳〒㔌⒎ᐨࠍ␜ߔߎߣ߇⍮ࠄࠇߡ޿ࠆ‫ޕ‬቟↰ࠄߦࠃ
ࠅ‫⇇⥃ޔ‬᷷ᐲߩ㎮㑆⋧੕૞↪ଐሽᕈ߇‫ߩࡦࡇࠬޔ‬ᄢ߈ߐߦࠃࠄߥ޿➅ࠅㄟ߹ࠇߚ㈩૏ᢙࠍ↪޿ߚ㎮㑆ᐔဋ႐ㄭૃߢ‫ޔ‬ቯ㊂
⊛ߦ߽ࠃߊ⸥ㅀߐࠇࠆߎߣ߇ᢙ୯⸘▚ߦࠃߞߡ⊒⷗ߐࠇߚ‫ޕ‬
ߘߎߢ‫ޔ‬ᚒ‫⇇⥃ߪޘ‬᷷ᐲߣ⇣ߥࠆ᷷ᐲ㗔ၞߢ޽ࠆ⛘ኻ㔖ᐲߦ߅޿ߡ‫ޔ‬loopcluster ㊂ሶࡕࡦ࠹ࠞ࡞ࡠᴺࠍ↪޿ߚ⸃ᨆࠍ
ⴕߞߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ၮᐩ⁁ᘒߦ߅ߌࠆ⥄⊒⏛ൻߩᄢ߈ߐߩ㎮㑆⋧੕૞↪ଐሽᕈߦߟ޿ߡ߽➅ࠅㄟ߹ࠇߚ㈩૏ᢙࠍ↪޿ߚ㎮
ᐔဋ႐ㄭૃߦࠃࠅቯ㊂⊛ߦ⸥ㅀߐࠇࠆߎߣ߇⊒⷗ߐࠇߚ‫ޔߦࠄߐޕ‬ᐔဋ႐ㄭૃ⥄૕ߩᡷ⦟ߣߒߡࡌ࡯࠹ဳߩᐔဋ႐ㄭૃ
㎮㑆ࡌ࡯࠹ㄭૃࠍߎߩ♽ߦኻߒߡ⹜ߺ‫ߩဳࠬࠗࡢޔ‬ᐔဋ႐ㄭૃߣห᭽ߩ⚿ᨐࠍᓧߚ
⺋Ꮕߪ 75㧑ᡷༀ‫ޕ‬
⻠Ṷߢߪߎߩᣂߒ޿ࡌ࡯࠹ဳߩㄭૃࠍ࡜ࡦ࠳ࡓࡀࠬߩ޽ࠆࠬࡇࡦ♽ߦㆡ↪ߒߚ⚿ᨐߦߟ޿ߡ߽⚫੺ߒߚ޿‫ޕ‬
A3
ඵষࡓୃ༷‫ڒ‬ঊঽ଻ఘ(CuBr)Sr2Nb3O10 ͈ঽ଻
ㄞᧄ ศᑝ㧔੩ᄢℂ㧕
ૐ᷷วᚑᴺߩ৻ߟߢ޽ࠆࠗࠝࡦ੤឵෻ᔕߪ‫ޔ‬ㅢᏱߩ࿕⋧෻ᔕߢߪᒻᚑߒᓧߥ޿᭴ㅧࠍᜬߞߚᣂߒ޿⏛ᕈ૕ࠍวℂ⊛ߦഃ
ࠅ಴ߔߎߣ߇ߢ߈ࠆ‫੹ޕ‬࿁‫ޔ‬Უ૕ߢ޽ࠆਃጀߩ Dion-Jacobson ဳጀ⁁ࡍࡠࡈࠬࠞࠗ࠻ RbSr2Nb3O10CuBr2 ࠍࠗࠝࡦ੤
឵ߔࠆߎߣߦࠃߞߡ‫ޔ‬ੑᰴరᱜᣇᩰሶࠍᜬߟ(CuBr)Sr2Nb3O10 ࠍᣂߚߦวᚑߒ‫ߩߘޔ‬Ꮺ⏛₸‫⏛ޔ‬ൻ‫ޔ‬Ყᾲ‫ޔ‬μSR‫ޔ‬ਛᕈሶ
࿁᛬ߩ᷹ቯࠍⴕߞߚ‫⏛ࡠ࠯ޕ‬႐ਅߩᲧᾲ᷹ቯߢߪ‫ޔ‬9.1K ߣ 7.3K ߦㅙᰴ⋧ォ⒖ࠍ␜ߔ⇣Ᏹ߇⷗ࠄࠇ‫ޔ‬ૐ᷷஥ߩ⋧ォ⒖ߪ
⏛᳇⋧ォ⒖ߢ޽ࠆߎߣ߇⏛ൻ₸‫ޔ‬μSR ߩ⚿ᨐࠃࠅ␜ໂߐࠇࠆ‫⥝ߦࠄߐޕ‬๧ᷓ޿ߎߣߦ‫ޔ‬ᒝ⏛႐⏛ൻ᷹ቯߢ 1/3 ࡊ࡜࠻࡯
ߢ᷹ⷰߐࠇߚ‫ߪࠇߎޕ‬ੑᰴరᱜᣇᩰሶ෻ᒝ⏛ᕈ૕ߦߣߞߡ੍ᦼߒᓧߥ޿․⇣ߥ⃻⽎ߢ޽ࠆ‫ޕ‬
A4
CuB2O4 ͈ࣞਔ෨ ESR
⮮↰ ᢅਯ㧔⑔੗ᄢ㆙⿒࠮ࡦ࠲࡯㧕
CuB2O4 ߪ‫ޔ‬ૐ᷷ߢㅙᰴ⋧ォ⒖ࠍ␜ߔ‛⾰ߢ޽ࠅ‫ޔ‬෻ኻ⒓ᕈ੤឵⋧੕૞↪߇ߘߩ⏛ᕈߦ㊀ⷐߥᓎഀࠍᨐߚߒߡ޿ࠆ‫ޕ‬
TN = 21K ߢᒙᒝ⏛ᕈォ⒖‫ ߦࠄߐޔ‬T*=10K ߢਇᢛวࠞࠗ࡜࡞ⲷᣓ⏛ᕈ߳ߣォ⒖ߔࠆ‫ ߚ߹ޕ‬T*ㄭறߢߪ B//a ߩ⏛ൻ₸ߦ
⇣Ᏹ߇⃻ࠇ‫ࡦ࠻࡝࠰࡞࡜ࠗࠞޔ‬ᩰሶࡕ࠺࡞ߦࠃࠆ⺑᣿߇ߥߐࠇߡ޿ࠆ‫ޕ‬ᚒ‫ࠆߌ߅ߦ⾰‛ߩߎߪޘ‬ㅙᰴ⋧ォ⒖⃻⽎ߩℂ⸃ߣ
ࠞࠗ࡜࡞⏛ᕈ૕ߦ․᦭ߥ⃻⽎ߩ⊒⷗ࠍ⋡ᜰߒ ESR ᷹ቯࠍⴕߞߡ޿ࠆ‫ޕ‬᷷ᐲ 2K ߩⲷᣓ⏛ᕈ⋧ߦ߅޿ߡ‫ޔ‬ᣢߦႎ๔ߐࠇߡ
޿ࠆᏱ⏛ᕈ౒㡆ߣᣂߚߦ⚂ 180GHz ߩ࠯ࡠ⏛႐ࠡࡖ࠶ࡊࠍ᦭ߔࠆ 2 ߟߩ ESR ࡕ࡯࠼ࠍ᷹ⷰߒߚ‫ ࠄࠇߎޕ‬2 ߟߩ ESR
ࡕ࡯࠼ߪ‫⚿ޔ‬᥏ቇ⊛ߦ⇣ߥࠆ 2 ߟߩ㕖╬ଔߥ㌃ࠨࠗ࠻ߦ߅ߌࠆᏱ⏛ᕈ౒㡆ߣⲷᣓ⏛ᕈ౒㡆ߢ޽ࠆߣ⠨߃ߡ޿ࠆ‫⻠ޕ‬Ṷߪ‫ޔ‬
⸃ᨆߩ⚿ᨐᓧࠄࠇࠆ੤឵⋧੕૞↪ߩᄢ߈ߐࠍ⚿᥏᭴ㅧߣ⏛᳇⋧࿑ߣᲧセߒߥ߇ࠄ⼏⺰ࠍㅴ߼ࠆ੍ቯߢ޽ࠆ‫ޕ‬
A5
ၾঊΑάϋࠏ̤̫ͥͅାࣣ-๱ାࣣ஗֊
᧛ፉ 㓉ᶈ㧔਻Ꮊᄢℂ㧕
㊂ሶࠬࡇࡦ♽ߦ߅޿ߡߒ߫ߒ߫ࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦߩലᨐߦࠃࠅ‫ޔ‬㕖ᢛวߥή⒎ᐨ⁁ᘒߣ޿߁․ᱶߥ⁁ᘒ߇⃻ࠇࠆ‫ߎޕ‬
ࠇߪㅢᏱߩ⋧㑐㑐ᢙࠍ⺞ߴࠆߣ‫ޔ‬ᜰᢙ㑐ᢙ⊛ߦᷫ⴮ߒ߆ߟᄌ⺞ᵄᢙߩᝄേ߇߆߆ߞߚᒻߣߒߡߣࠄ߃ࠄࠇࠆ‫ޕ‬႐ߩℂ⺰⊛
ߥ⠨ኤ߆ࠄ⋧㑐㑐ᢙߣേ⊛ߥ⋧㑐㑐ᢙߣߩ㑐ଥ߇⷗಴ߐࠇࠆ߇‫ߦࠄߐޔ‬ૐബ⿠ߩࠛࡀ࡞ࠡ࡯ࠬࡍࠢ࠻࡞ߣߩ㑐ଥ߽⷗಴ߖ
ࠆ‫ߩ࡞࠻ࠢࡍࠬ࡯ࠡ࡞ࡀࠛߡߞ߇ߚߒޕ‬ᝄ⥰޿ࠍ⺞ߴࠆߎߣߦࠃࠅ‫⋧ޔ‬㑐㑐ᢙߩᝄ⥰޿ߩ੍᷹߇޽ࠆ⒟ᐲน⢻ߢ޽ࠆ‫⑳ޕ‬
ߣ㊁᧛᳁
਻ᄢߦࠃࠆ⎇ⓥ[13]ߦ߅޿ߡ‫⁁ࠫ࠶ࠛޔ‬ᘒࠍ↪޿ߚ◲ଢߥᣇᴺߦࠃࠅᢛว㕖ᢛวㆫ⒖ࠍ⺞ߴ‫ޔ‬ᄌ⺞ᵄᢙ෸߮
62
⋧㑐㐳ߩᝄ⥰޿ߦߟ޿ߡ‫⋥ޔ‬ធ⋧㑐㑐ᢙࠍ⸘▚ߒߚ߽ߩ[4]ߣ consistent ߥ⚿ᨐࠍᓧߚ‫৻ߩߘޕ‬ㅪߩ⎇ⓥᚑᨐߦߟ޿ߡ⻠
Ṷߔࠆ‫ޕ‬
[1] Nomura and Murashima, J. Phys. Soc. Jpn. Suppl., Vol. 74, p. 42, 2005.
[2] Murashima and Nomura, Phys. Rev. B, Vol. 73, p. 214431, 2006.
[3] Murashima and Nomura, J. Phys. Cond. Matt., to be appeared.
[4] Schollwock et al, Phys. Rev. B, Vol. 53, p. 3304, 1996.
A6
۪ેΙͺΐσρΐ΃σࠫએ̤̫ͥͅΑάϋΆλΛίેఠ
⮮↰
ᷤ㧔ฬฎደᄢℂ㧕
Ⅳ⁁࠴ࠕࠫ࡞࡜ࠫࠞ࡞⺃ዉ૕ߪ⥝๧ᷓ޿⏛᳇ߥࠄ߮ߦવዉ᜼േ‫ޔ‬᭴ㅧ⋧ォ⒖╬ࠍ␜ߔߎߣ߆ࠄਥߦൻቇߩಽ㊁ߢᦨㄭᵈ
⋡ࠍ㓸߼ߡ޿ࠆ‫ޕ‬ᚒ‫ⷺࡦࡇࠬߪޘ‬ㆇേ㊂㊂ሶᢙ S = 1/2 ࠍ᦭ߔࠆ⏛ᕈಽሶࠞ࠴ࠝࡦ BBDTA+߇‫ޔ‬ኻࠕ࠾ࠝࡦߩ⒳㘃߿⚿
᥏ൻ᧦ઙߦࠃߞߡ‫ޔ‬ੑ㊂૕‫ޔ‬2 ⿷ਗ߮ߦ 3 ⿷ࠬࡇࡦ࡜࠳࡯‫ޔ‬㎮⁁‫ޔ‬ੑᰴᱜᣇᩰሶߣ޿ߞߚ⏛᳇ࡀ࠶࠻ࡢ࡯ࠢ᭴ㅧࠍᒻᚑߒ‫ޔ‬
෻ᒝ⏛ᕈォ⒖‫ޔ‬ᒝ⏛ᕈ⋧ォ⒖‫ޔ‬spin-Peierls ォ⒖ߥߤᄙᓀߥ⏛᳇᜼േࠍ␜ߔߎߣࠍ⷗಴ߒߡ޿ࠆ‫ߪ⟲⾰‛ߩߎޕ‬ᄙᰴర⏛
᳇ࡀ࠶࠻ࡢ࡯ࠢࠍ᦭ߔࠆ㊂ሶࠬࡇࡦ♽ࠍឭଏߔࠆ߽ߩߣᦼᓙߒߡ޿ࠆ‫ޕ‬
ᧄ⊒⴫ߢߪ 3 ᰴరࡀ࠶࠻ࡢ࡯ࠢ᭴ㅧࠍᒻᚑߒߡ޿ߥ߇ࠄ‫ޔ‬෻⏛ᕈၮᐩ⁁ᘒࠍ᦭ߔࠆ BBDTA+Ⴎ⚿᥏ߩ᭴ㅧߣ⏛᳇⊛ᕈ
⾰ߦߟ޿ߡ⚫੺ߔࠆ੍ቯߢ޽ࠆ‫ޕ‬
A7
ঽાಎ͈ΑάϋΙνȜῄ̤̫ͥα·Πσ΃ͼρσಉ੬͂ಱ‫ז‬ρΛΞͻϋΐλȜ‫ס‬ఘ͈‫ވ‬ం
૒⮮ ᱜኡ㧔ේሶജᯏ᭴㧕
᦭㒢ᧄߩ෻ᒝ⏛ᕈ㎮߇⚿วߒߚࠬࡇࡦ࡜࠳࡯ᮨဳߢ⸥ㅀߐࠇࠆ⏛ᕈ૕ߪᢙᄙߊሽ࿷ߒᄙߊߩታ㛎ℂ⺰⎇ⓥ߇ᚑߐࠇߡ߈
ߚ‫੹ޕ‬ᣣߢߪࠬࡇࡦ࡜࠳࡯ߩၮᧄ⊛ᕈ⾰ߪ㕖Ᏹߦ⦟ߊℂ⸃ߐࠇߡ޿ࠆ‫ ࡦࡇࠬޕ‬z ゲ๟ࠅߩ U(1)ኻ⒓ᕈߣਗㅴኻ⒓ᕈࠍ߽
ߟࠡࡖ࠶ࡊߩ޽ࠆࠬࡇࡦ࡜࠳࡯ߩ৻⥸⊛․ᓽߩ 1 ߟߣߒߡ‫ޟ‬z ゲᣇะߦ⏛႐ࠍශടߒߡࠡࡖ࠶ࡊࠍߟ߱ߔߣኻ⒓ᕈߩ⎕ࠇ
߇ߥ޿ᦺ᳗࡜࠶࠹ࠖࡦࠫࡖ࡯ᶧ૕⋧߇⃻ࠇࠆ‫߇ߣߎ߁޿ߣޠ‬⍮ࠄࠇߡ޿ࠆ‫ޕ‬ᚒ‫ޔߪޘ‬3 ᧄ㎮ࠬࡇࡦ࡜࠳࡯ߩ⥄ὼߥ᜛ᒛߢ
޽ࠆࠬࡇࡦ࠴ࡘ࡯ࡉ
┵ߩ 2 ᧄ㎮ߩ㑆ߦ߽෻ᒝ⏛ᕈ⚿วࠍട߃ߡ๟ᦼႺ⇇᧦ઙࠍ⺖ߒߚ࡜࠳࡯ࠍૐࠛࡀ࡞ࠡ࡯᦭ലℂ⺰
ߩᣇᴺߦၮߠ޿ߡ⸃ᨆߒߚ‫⚿ߩߘޕ‬ᨐ‫ߪߣ♽࡯࠳࡜ࡦࡇࠬ
ߪߡ޿߅ߦࡉ࡯ࡘ࠴ࡦࡇࠬޔ‬ኻᾖ⊛ߦ⏛႐⺃⿠ᦺ᳗࡜࠶࠹ࠖ
ࡦࠫࡖ࡯ᶧ૕⋧ߩਛߦࡌࠢ࠻࡞ࠞࠗ࡜࡞⒎ᐨ߇㓝ࠇߡ޿ࠆߎߣ߇ಽ߆ߞߚ‫࡞࡜ࠗࠞߩߎޕ‬⒎ᐨߪ㎮㑆ᣇะߩࡄ࡝࠹ࠖኻ⒓
ᕈߩ⎕ࠇࠍ઻߁‫ޕ‬
[1] M. S and T. Sakai, cond-mat/0611549 (accepted to PRB).
[2] M. S, cond-mat/0612165.
A8
։༷എ S=2 Αάϋङ̤̫ͥͅ 1/2 ঽ‫ا‬ίρΠȜ
ችፒ ኡ㧔ጟጊᄢℂ㧕
৻ᰴర㊂ሶ෻ᒝ⏛ᕈ૕ߢߪᒝ޿㊂ሶࠁࠄ߉ߩߚ߼ߦ㊂ሶ♽․᦭ߩ⃻⽎߇ߒ߫ߒ߫⊒⃻ߔࠆ‫ޕ‬ᒝ⏛႐ਛߢ‫࠶ࡖࠡࡦࡇࠬޔ‬
ࡊ߇⺃⿠ߐࠇ‫⏛ޔ‬ൻᦛ✢ߦᐔမߥ㗔ၞ߇⃻ࠇࠆ⏛ൻࡊ࡜࠻࡯ߩ໧㗴ߪૐᰴర㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆౖဳ⊛ߥ㊂ሶࠁࠄ߉ߩ
໧㗴ߩ৻ߟߢ‫ޔ‬ታ㛎‫ޔ‬ℂ⺰ߩਔ㕙߆ࠄ♖ജ⊛ߦ⎇ⓥ߇ߥߐࠇߡ޿ࠆ‫ޕ‬
⑳ߚߜߪ‫⏛ޔ‬႐ਛߦ߅ߌࠆ single-ion ဳ⇣ᣇᕈࠍ߽ߟ S=2XXZ ㊂ሶࠬࡇࡦ㎮ߩၮᐩ⁁ᘒࠍ࡟ࡌ࡞ࠬࡍࠢ࠻ࡠࠬࠦࡇ࡯
63
ߩᣇᴺࠍ↪޿ߡ⺞ߴ‫⋧ޔ‬࿑ࠍ᳿ቯߒߚ‫ޕ‬㘻๺⏛ൻߩඨಽߩ୯ࠍᜬߟ႐วߩ⋧࿑ߪ‫ޔ‬gap ࠍᜬߟ 2 ߟߩ⋧‫ޔ‬Large-D ⋧‫ޔ‬
magnetizedVBS ⋧‫ ߣޔ‬gapless ߩ no-plateau ⋧߆ࠄᚑࠅ┙ߟߎߣ߇ಽ߆ߞߚ‫⚿ߩߎޕ‬ᨐߪ‫ޔ‬S=2 ࠬࡇࡦ㎮ߢ 1/2 ⏛ൻࡊ
࡜࠻࡯߇಴⃻ߔࠆߣ޿߁‫ޔ‬Oshikawa-Yamanaka-Affleck ߩࡊ࡜࠻࡯಴⃻᧦ઙߣᢛวߔࠆ‫ޕ‬
A9
΀ϋΗϋΈσιϋΠ֚͂ষࡓၾঊΑάϋࠏ͈‫ܖ‬ೲેఠ
የฎ ᣽ፏ㧔ጟጊᄢℂ㧕
㊂ሶࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ߪ㊂ሶᖱႎߥߤߩಽ㊁ߢᵈ⋡ߐࠇߡ޿ࠆ㊂ሶജቇ․᦭ߩᕈ⾰ߢ޽ࠆ‫ᦨޕ‬ㄭ‫ߩߎޔ‬ᕈ⾰ࠍ‛ᕈಽ
㊁‫ߦ․ޔ‬㊂ሶࠬࡇࡦ♽ߩ⎇ⓥߦ↢߆ߔ⹜ߺ߇ⴕࠊࠇߟߟ޽ࠆ‫ޕ‬
ᧄ⎇ⓥߢߪ‫ޔ‬㊂ሶᖱႎಽ㊁ߥߤߢ↪޿ࠄࠇߡ޿ࠆ‫ࠍޠ࡯ࡇࡠ࠻ࡦࠛࡦࡑࠗࡁ࡮ࡦࠜࡈޟ‬ዉ౉ߒ‫ߩߘޔ‬ᝄࠆ⥰޿߆ࠄૐᰴ
ర㊂ሶࠬࡇࡦ♽ߩၮᐩ⁁ᘒߦߟ޿ߡߩᖱႎࠍᒁ߈಴ߒߚ޿‫੹ޕ‬࿁ߪ৻ᰴర XXZ ࠬࡇࡦ㎮ߦߟ޿ߡߎߩ㊂ࠍ෩ኒኻⷺൻߦ
ࠃߞߡ⸘▚ߒ‫ޔ‬ᰴㄭធ⋧੕૞↪߿⇣ᣇᕈࠛࡀ࡞ࠡ࡯ߦߤߩ᭽ߦଐሽߔࠆ߆ࠍ⺞ߴߚ‫⻠ޕ‬Ṷߢߪߘࠇࠄߩ⚿ᨐ߆ࠄᓧࠄࠇࠆ
ᖱႎߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬
A10
ΧσΟϋঽ଻ఘ NDMAP ͈ঽ‫ܨ‬႗͈ܳ‫ڙ‬ഽջం଻
ᨰᧁ 㓉ᚑ㧔㒋ᄢᭂ㒢࠮ࡦ࠲࡯㧕
S =1 ᡆ৻ᰴరࡂࠗ࠯ࡦࡌ࡞ࠣ෻ᒝ⏛ᕈ૕ߩ NDMAP
ൻቇᑼ㧦Ni(C5H14N2)2N3PF6ߢߪ‫(ࡦࠝࠗ࡞ࠤ࠶࠾ޔ‬Ni2+, S =1߇
ࠕࠫ࠼ၮࠍ੺ߒߡ c ゲᣇะߦ㎮ࠍᒻᚑߔࠆ‫ ߚ߹ޕ‬Ni ࠗࠝࡦߪ⓸⚛ߦ࿐߹ࠇߚ౎㕙૕ࠍ૞ࠅ‫౎ߩߎޔ‬㕙૕ߩਥゲ߇ c ゲ
ߦኻߒߡ⚂ 16q௑޿ߚ 2 ⒳㘃ߩ㎮߇⚿᥏ਛߦሽ࿷ߔࠆ‫ߩߎޔ߼ߚߩߘޕ‬ੑ⒳㘃ߩ㎮ߦኻߒߡหᤨߦ⚿᥏႐ߩਥゲߣᄖㇱ
⏛႐ࠍᐔⴕߦߔࠆߎߣߪ಴᧪ߥ޿‫⚿ߩߎޕ‬᥏᭴ㅧࠍ෻ᤋߒߚ⥝๧ᷓ޿ታ㛎⚿ᨐߣߒߡ‫ޔ‬c ゲ߆ࠄ⚂ 16q௑ߌߡ⏛႐ࠍ߆
ߌߚਛᕈሶᢔੂߩታ㛎߇޽ࠆ‫ߩࠇߙࠇߘޔߣࠆࠃߦࠇߘޕ‬㎮ߏߣߦ⇣ߥࠆ⏛႐ߢ⏛᳇⒎ᐨൻߔࠆߎߣ߇ႎ๔ߐࠇߡ޿ࠆ‫ޕ‬
ᧄ⎇ⓥߢߪ‫⚿ޔ‬᥏ゲߣᄖㇱ⏛႐ߩ㑐ଥ߇⏛᳇ബ⿠ߦߤߩࠃ߁ߦ෻ᤋߐࠇࠆ߆ࠍ⺞ߴࠆߚ߼ߦ‫⏛ޔ‬᳇ബ⿠ߩⷺᐲଐሽᕈߦߟ
޿ߡ⿥વዉࡑࠣࡀ࠶࠻ࠍ↪޿ߚ ESR ߢ᷹ቯߒߚߩߢߘߩ⚿ᨐߦߟ޿ߡႎ๔ߔࠆ‫ޕ‬
A11
݀ 1 ষࡓΧͼΔϋασΈঽ଻ఘ β -BBDTAȆGaBr4
ᷡ᳓ ஜ๋㧔ฬฎደᄢℂ㧕
β-BBDTA࡮GaBr4 ߪ⃻ታ‛⾰ߩਛߢ߽╬ᣇ⊛ߥ S=1/2 ࠬࡇࡦࠍᜬߟ᦭ᯏ⏛ᕈ૕ߢ޽ࠅ‫ޔ‬ab 㕙ౝߦ 2 ⒳㘃ߩ 1 ᰴర㎮
Chain I, Chain II߇੤੕ߦ㈩⟎ߔࠆ⚿᥏᭴ㅧࠍ߽ߟ‫ޕ‬ᚒ‫⏛ߩߎߪޘ‬ᕈ૕ߩ⏛᳇⊛ߥᕈ⾰ࠍ⺞ߴࠆߚ߼‫⏛ޔ‬ൻ₸‫⏛ޔ‬ൻ߅
ࠃ߮⏛႐ਛߩᲧᾲߩ᷹ቯࠍⴕߞߚ‫ޕ‬2K એ਄ߩ⏛ൻ₸ߪ㎮ౝߦ⋧੕૞↪ 2J1=197K
Chain I߇௛ߊ 1 ᰴర෻ᒝ⏛ᕈࡂࠗ
࠯ࡦࡌ࡞ࠣ㎮ߣ 2J2=8.7K
ChainII߇௛ߊ 1 ᰴరᒝ⏛ᕈࡂࠗ࠯ࡦࡌ࡞ࠣ㎮ߩන⚐ߥ๺ߣߒߡ⺑᣿ߢ߈ࠆ‫ޕ‬J1 ߪ 100K ߩ
ࠝ࡯࠳࡯ࠍᜬߟߩߢ‫ޔ‬᷷ᐲ 10K એਅߩૐ᷷ߢߪ෻ᒝ⏛ᕈ㎮ߩ⏛ᕈ߳ߩነਈߪᒝ⏛ᕈ㎮ߦᲧߴήⷞߢ߈ࠆ߶ߤዊߐ޿‫߹ޕ‬
ߚᒝ⏛ᕈ㎮
Chain II㑆ߦ௛ߊ⋧੕૞↪ 2zJ’=0.29K ߦࠃࠆᒝ⏛ᕈォ⒖߇᷷ᐲ 0.4K ߦ߅޿ߡ᷹ⷰߐࠇߚ‫ޕ‬Ყᾲߪᡆ 1 ᰴ
ర Heisenberg ᒝ⏛ᕈ૕ߩℂ⺰⸘▚ߣቯ㊂⊛ߥ৻⥌ࠍ␜ߔߎߣ߇ࠊ߆ߞߚ‫ޕ‬ᓥߞߡߎߩ⏛ᕈ૕ߪࡂࠗ࠯ࡦࡌ࡞ࠣࡕ࠺࡞
ߩℂᗐ⊛ߥࡕ࠺࡞‛⾰ߢ޽ࠆߣ޿߃ࠆ‫ߩ⋧ߩߎޕ‬ਇ⚐‛ലᨐߦߟ޿ߡ߽ႎ๔ߔࠆ‫ޕ‬
64
A12
CuB2O4 ͈ಈষ௖ഢ֊͂ঽ‫ܨ‬௖଎
቟↰ ᵗ␭㧔⑔੗ᄢᎿ㧕
CuB2O4 ߪㅙᰴ⋧ォ⒖ࠍ⿠ߎߔ⏛ᕈ૕ߢ޽ࠆ‫⏛ࡠ࠯ޕ‬႐ਛߢ᷷ᐲࠍਅߍߡ޿ߊߣ‫ޔ‬TN =21K ߢᏱ⏛ᕈ⋧߆ࠄᢛว⋧ߢ޽
ࠆᒙᒝ⏛ᕈ⋧ߦ⋧ォ⒖ࠍ⿠ߎߔ‫ޔߦࠄߐޕ‬T* 9.5K ߢࠬࡇࡦ߇ c ゲᣇะߦⲷᣓࠍ߹޿ߚਇᢛวߥࡋ࡝ࠞ࡞⋧ࡋߣੑᐲ⋡
ߩ⋧ォ⒖߇⿠ߎࠆ‫ߩࠄࠇߎޕ‬ォ⒖ὐߪ⏛႐ࠍ߆ߌࠆ⚿᥏ゲߩᣇะߣߘߩᒝߐߦࠃߞߡᄌൻߔࠆ‫ޔߚ߹ޕ‬T* ㄭறߦ߅޿ߡ‫ޔ‬
࠰࡝࠻ࡦᩰሶߩሽ࿷߽⏕⹺ߐࠇߡ޿ࠆ‫ޔߡߒߘޕ‬ㄭᐕ‫ޔ‬ᣂߚߥၮᐩ⁁ᘒߩሽ࿷߇ႎ๔ߐࠇ‫ߩߘޔ‬⢛ᓟߩ‛ℂߦߟ޿ߡ㑐ᔃ
߇ᜬߚࠇߡ޿ࠆ‫ߥ߁ࠃߩߎޕ‬᭽‫⋧ߥޘ‬ォ⒖߇᷹ⷰߐࠇߡ޿ࠆ CuB2O4 ߩࠬࡇࡦ࠳ࠗ࠽ࡒࠢࠬߩᖱႎࠍᓧࠆߚ߼ߦ‫ޔ‬ᚒ‫ߪޘ‬
CuB2O4 ߩන⚿᥏⹜ᢱࠍ↪޿ߡ 11B-NMR ታ㛎ࠍⴕߞߡ޿ࠆ‫ޕ‬ᣂߚߥᖱႎߣߒߡ‫ޔ‬ESR ታ㛎ߦ߅޿ߡ⏛႐ࠍ⚂ 4T ⒟ c
ゲᣇะߦࠍශടߒߚߣ߈‫ ߘࠃ߅ޔ‬5 6K ߢᒝ⺃㔚ォ⒖ࠄߒ߈ᝄ⥰޿ࠍߒߡ޿ࠆߣ޿߁ႎ๔߇ߥߐࠇߚ‫⋧ߩߎޕ‬ォ⒖ࠍ
NMR ታ㛎߆ࠄ᷹ⷰߒ‫⚿ߩߘޔ‬ᨐߦߟ޿ߡႎ๔ߔࠆ‫ޕ‬
A13
ࡣങഎ̈́‫ڒ‬ঊ͈ুဇഽͬ‫͚܄‬ၾঊΑάϋࠏ͈ၾঊκϋΞ΃συΏηντȜΏοϋ
㜞ᯅ ᱜౖ㧔ᄢ㒋Ꮢᄢ㧕
ࠬࡇࡦࡄࠗࠛ࡞ࠬォ⒖ߦߪ㐳޿⎇ⓥߩᱧผ߇޽ࠆ߇‫⎇ࠍ⽎⃻⇇⥃ߩߘޔ‬ⓥߒߚ଀ߪዋߥ޿‫ޔߪߜߚ⑳ޕ‬SSE ࡕࡦ࠹ࠞ
࡞ࡠᴺߦᡷ⦟ࠍട߃ࠆߎߣߦࠃࠅ‫ޔ‬㊂ሶࠬࡇࡦ߇ฎౖ⊛ᩰሶߣ⚿วߒߚ♽ࠍ㊂ሶࡕࡦ࠹ࠞ࡞ࡠߢขࠅᛒ߁ᣇᴺࠍ㐿⊒ߒߚ‫ޕ‬
ߎߩᣇᴺࠍᡆ৻ᰴరࠬࡇࡦ࡮ᩰሶ♽ߦㆡ↪ߒߡ‫᦭ޔ‬㒢᷷ᐲ⋧࿑ࠍ૞ᚑߔࠆߣߣ߽ߦ‫ޔ‬ᩰሶ⋧㑐㑐ᢙߩ᦭㒢ࠨࠗ࠭ࠬࠤ࡯࡝
ࡦࠣ⸃ᨆࠍⴕ޿‫ ߇♽ߩߎޔ‬Blume-Capel ࡕ࠺࡞
Blume-Emery-Griffiths ࡕ࠺࡞ߩ․೎ߥᒻ ߣหߓ࡙࠾ࡃ࡯ࠨ࡝࠹ࠖ
ࠢ࡜ࠬߦዻߔࠆߎߣ߇ࠊ߆ߞߚ‫ᦨޕ‬ㄭߪേ⊛⥃⇇ᜰᢙߩ⸃ᨆࠍㅴ߼ߡ޿ࠆߩߢ‫߇▚⸘ޔ‬㑆ߦว߃߫ႎ๔ߒߚ޿‫⎇ߩߎޕ‬ⓥ
ߪ⨹㊄ⷡ
ᄢ㒋Ꮢ┙ᄢቇතᬺ‫ޔ‬ฎ㊁㔚᳇‫ޔ‬ኹ੗┨
ᄢ㒋Ꮢ┙ᄢቇ‫ޔ‬ട⮮ጪ↢
᧲ᄢ‛ᕈ⎇ߣߩ౒ห⎇ⓥߢ޽ࠆ‫ޕ‬
A14
S=1 ΑάϋΘͼζȜࠏ Ba3Mn2O8 ͈෻࢜দၳ͈‫ޑ‬ঽા ESR
ᄢਭ଻ ᤯㧔␹ᚭᄢಽሶࡈࠜ࠻ࠨࠗࠛࡦࠬ࠮ࡦ࠲࡯㧕
TlCuCl3 ߦઍ⴫ߐࠇࠆ⏛႐ਛ⏛᳇⒎ᐨൻߦᄢᄌᵈ⋡߇㓸߹ߞߡ޿ࠆ‫ ߪߢ♽ߩࠄࠇߎޕ‬S=1/2 ߇࠳ࠗࡑ࡯ࠍᒻᚑߒߡ޿
ࠆ‫ޕ‬ᚒ‫ ߪޘ‬S=1 ߩ࠳ࠗࡑ࡯♽ߦ߅ߌࠆ⏛႐ਛ⏛᳇⒎ᐨߩ᷹ⷰࠍ⁓ߞߡ Mn ࠳ࠗࡑ࡯‛⾰ࠍ⺞ߴߚ‫ޕ‬Ba3Mn2O8 ߪ⏛ᕈࠍ
ᜂ߁ Mn5+ࠗࠝࡦ
S=1㑆ߩ෻ᒝ⏛ᕈ⊛ߥ⋧੕૞↪ߦࠃࠅ S=1 ߩ࠳ࠗࡑ࡯ࠍᒻᚑߔࠆ࠳ࠗࡑ࡯♽ߢ޽ࠆ‫⚿ޕ‬᥏᭴ㅧ߆ࠄ
Mn5+ࠗࠝࡦ߇ c 㕙ౝߦਃⷺᩰሶࠍᒻᚑߒߚ᭴ㅧࠍ߽ߟ‫ޕ‬ၮᐩ⁁ᘒߣബ⿠⁁ᘒ㑆ߦߪࠛࡀ࡞ࠡ࡯ࠡࡖ࠶ࡊ߇ሽ࿷ߒ‫⏛ޔ‬ൻ
᷹ቯ߆ࠄ Egap=12.2K ߣ⷗Ⓧ߽ࠄࠇߡ޿ࠆ‫ޕ‬ᚒ‫⹜ᧃ☳ߦߢ߹ࠇߎߪޘ‬ᢱߩᒝ⏛႐ ESR ࠍⴕߥ޿‫✢ޔ‬᏷ߩ⏛႐ଐሽᕈ߇
ࠡࡖ࠶ࡊ߇ẩࠇࠆ⏛႐ࠃࠅᒝ⏛႐ߢ߶߷৻ቯߦߥࠆߎߣࠍ⷗޿಴ߒߡ޿ࠆ‫⹜ᧃ☳ޔߒ߆ߒޕ‬ᢱࠍ↪޿ߡ޿ࠆߩߢ g ୯ߩ
ಽᏓߣๆ෼✢᏷ࠍ᣿⍎ߦಽ㔌ߔࠆߎߣ߇ߢ߈ߥ޿‫੹ޕ‬࿁‫⏛ޔ‬႐ਛ㈩ะ⹜ᢱࠍ૞ᚑߒๆ෼✢᏷ߩ⏛႐ਛଐሽᕈߩ᷹ቯࠍ⹜ߺ
ߚ⚿ᨐࠍႎ๔ߔࠆ੍ቯߢ޽ࠆ‫ޕ‬
A15
S=1/2 ֚݀ষࡓ฽‫ޑ‬ঽ଻ఘ Cu2Cl4ȆH8C4SO2 ͈ঽ଻ࡄ‫ݪ‬
⮮Ỉ ⌀჻㧔␹ᚭᄢℂ㧕
ᡆ৻ᰴర෻ᒝ⏛ᕈ૕ Cu2Cl4࡮H8C4SO2 ߪࠬࡇࡦࠡࡖ࠶ࡊࠍᜬߜ‫⏛ޔ‬႐ࠍශടߔࠆߎߣߦࠃߞߡ⏛႐⺃⿠⋧ォ⒖ࠍ␜ߔ‫ޕ‬
Ꮧ㉼಄ಓᯏࠍ↪޿ߚ⏛ൻ᷹ቯ߿‫ޔ‬ᒝ⏛႐ ESR ᷹ቯߥߤߦࠃࠅ‫ߩ⾰‛ᧄޔ‬ૐᰴరᕈ߿‫࡯ࠠࠬࡦࠪࡠࡖࠫޔ‬቞⼱ߩ⋧੕૞↪
ߩነਈ߇᣿ࠄ߆ߦߥߞߡ߈ߚߩߢ‫⚿ߩߘޔ‬ᨐࠍႎ๔ߔࠆ‫ޕ‬
65
A16
S=1/2 ݀ 1 ষࡓঽ଻ఘ NaTiSi2O6 ͈૧‫̈́ܗ‬௖ഢ֊
␉ㇱ ᱜᒾ㧔᧲ᄢ‛ᕈ⎇㧕
S=1/2 1 ᰴర⏛ᕈ૕ߦ߅޿ߡ‫ߦߢ߹ࠇߎޔ‬ᄙߊߩ⎇ⓥႎ๔߇޽ࠆ‫ޕ‬ㄭᐕ‫ޔ‬CuGeO3 ߦઍ⴫ߐࠇࠆࠬࡇࡦ࡮ࡄࠗࠛ࡞ࠬォ
⒖ߪ‫ޔ‬ታ㛎‫ޔ‬ℂ⺰ߣ߽ߦ♖ജ⊛ߦ⎇ⓥߐࠇߚ‫ޕ‬ᚒ‫ޔߪޘ‬S=1/2 ᡆ 1 ᰴర⏛ᕈ૕ NaTiSi2O6 ߦ߅޿ߡ‫ ߘࠃ߅ޔ‬210K ߢ‫ޔ‬
ᩰሶᄌᒻߣߣ߽ߦ‫⋧ࠆߥߦ࠻࠶࡟ࠣࡦࠪࡦࡇࠬޔ‬ォ⒖ࠍ⊒⷗ߒߚ‫ޕ‬ᒰೋ‫⋧ߩߎޔ‬ォ⒖߽ࠬࡇࡦ࡮ࡄࠗࠛ࡞ࠬォ⒖ߢߪߥ޿
߆ߣ⠨߃ࠄࠇߚ߇‫⎇ޔ‬ⓥ߇ㅴ߻ߦߟࠇ‫ࠬ࡞ࠛࠗࡄ࡮ࡦࡇࠬޔ⷗৻ޔ‬ォ⒖ߦૃߡ޿ࠆ߇‫゠ޔ‬㆏ߩ⥄↱ᐲ߇㊀ⷐߥᓎഀࠍᨐߚ
ߒߡ޿ࠆߣ޿߁ߎߣ߇ࠊ߆ߞߡ߈ߚ‫⋧ߩߎޕ‬ォ⒖ߪ‫ޔ‬S=1/2 ᡆ 1 ᰴర⏛ᕈ૕ߦ߅޿ߡ‫゠ޔ‬㆏ߩ⥄↱ᐲ߇ሽ࿷ߔࠆ႐วߩᣂ
ᄸߥ⋧ォ⒖ߢߪߥ޿߆ߣ⠨߃ߡ޿ࠆ‫ޕ‬
A17
ൾˏၾఘέͿςঽ଻ङ͈ঽ‫ܨ‬႗ܳ
ᄢේ Ả㧔ർᄢℂ㧕
A3Cu3(PO4)4 (A = Ca, Sr ) ߦઍ⴫ߐࠇࠆᮡ㗴‛⾰ߪ‫ޔ‬ᐞ૗ቇ᭴ㅧ⿠࿃ߩૐᰴరࡈࠚ࡝⏛ᕈ૕ߣߒߡᵈ⋡ߐࠇߡ߅ࠅ‫ޔ‬
ℂ⺰ࠨࠗ࠼‫ޔ‬ታ㛎ࠨࠗ࠼෺ᣇ߆ࠄ⋓ࠎߦ⎇ⓥߐࠇߡ޿ࠆ‫ޕ‬ၮᐩ⁁ᘒߦ㑐ߒߡߪ‫(ޔ‬S,s)=(1,1/2)ࡈࠚ࡝⏛ᕈ㎮ߣߩ㘃ૃ߇ߔ
ߢߦᜰ៰ߐࠇߡ߅ࠅ[1]‫ޔ‬ബ⿠⁁ᘒ߹ߢ฽߼ߚਔ‛⾰ߩᲧセߪ㕖Ᏹߦ⥝๧ᷓ޿‫ߦ․ޕ‬ബ⿠ᯏ᭴ߦ㑐ߒߡߪ‫ޔ‬ᐞ૗ቇ⊛᭴ㅧ
ߩᏅ⇣߇㗻ࠍ಴ߒߡߊࠆߎߣ߇੍ᗐߐࠇࠆ‫ޕ‬ᚒ‫ࡦࡇࠬޔߪޘ‬ᵄℂ⺰‫ޔ‬㊂ሶࡕࡦ࠹ࠞ࡞ࡠᴺࠍ↪޿ߡ‫ޔ‬ၮᐩ⁁ᘒߦ߅ߌࠆࠬ
ࡇࡦ㈩૏‫ޔ‬ਇ⚐‛ലᨐ‫⏛ߪߦࠄߐޔ‬᳇⊛ߥബ⿠᭴ㅧߥߤߩ⹦⚦ࠍ⸃ᨆߔࠆ‫⻠ᧄޕ‬Ṷߢߪ‫ޔ‬1㧙1/2 ࡈࠚ࡝⏛ᕈ㎮ߣߩᲧセ
ࠍㅢߒߡᮡ㗴‛⾰․᦭ߩᕈ⾰ࠍ᣿ࠄ߆ߦߒߡࠁߊ‫ޕ‬
[1] K. Takano, K. Kubo, H. Sakamoto, J. Phys.: Condens. Matter 8(1996) 6405
A18
K11H[(VO)3(SbW9O33)2]¦27H2O ͂ K12[(VO)3(BiW9O33)2]¦29H2O ͈ޭ೩‫أ‬Ȃ
ࣞঽા‫͈́ئ‬෎ယၾ
ዊự ⧐మ㧔᧲Ꮏᄢᔕ↪࠮࡜ࡒ࠶ࠢࠬ⎇㧕
ᚒ‫ᦨߪߢࡊ࡯࡞ࠣߩޘ‬ㄭ‫ޔ‬V4+
S=1/2߇ਃⷺᒻࠍ᭴ᚑߒߡ޿ࠆൻว‛ K11H[(VO)3(SbW9O33)2]࡮27H2O
ൻว‛ 1߅ࠃ
߮ K12[(VO)3(BiW9O33)2]࡮29H2O
ൻว‛ 2ࠍวᚑߒ‫ޔ‬Magnetization Step Method (MST) ᷹ቯߦࠃࠅ‫ޔ‬ൻว‛ 1 ߩၮ
ᐩ⁁ᘒߪੑߟߩੑ㊀㗄ߢ޽ࠅ‫ޔ‬ൻว‛ 2 ߩၮᐩ⁁ᘒߪ৻ߟߩੑ㊀㗄ߢ᭴ᚑߐࠇߡ޿ࠆߣ⠨߃ߡ޿ߚ‫੹ߒ߆ߒޕ‬࿁ߩᾲኈ
㊂᷹ቯߦࠃࠅ‫ߩࠇߕ޿ޔ‬ൻว‛߽ၮᐩ⁁ᘒߪ৻ߟߩੑ㊀㗄ߢ᭴ᚑߐࠇߡ޿ࠆߎߣࠍᡰᜬߔࠆ⚿ᨐࠍᓧߚ‫ࡦࡇࠬޔߚ߹ޕ‬㑆
ߦ Dzyaloshinskii- Moriya(DM) ⋧੕૞↪߇௛޿ߡ޿ࠆߎߣ߽‫ᧄޔ‬᷹ቯ߆ࠄ⏕߆߼ߚ‫⚿ߩࠄࠇߎޕ‬ᨐߦߟ޿ߡ⹦ߒߊႎ๔
ߔࠆ‫ޕ‬
B1
΢ΦΑΉȜσౙ໦ঊঽ୞͈೩‫أ‬ঽ‫௶ܨ‬೰
ጊญ
᣿㧔᧲ᄢ‛ᕈ⎇㧕
ૐ᷷ߢ㜞ࠬࡇࡦߩၮᐩ⁁ᘒࠍߣࠆ Mn, Fe, Ni ߥߤߩᄙᩭㆫ⒖㊄ዻ㍲૕ߢߪ‫ޔ‬ಽሶ 1 ୘ߩᕈ⾰ߦ⿠࿃ߒߡ⏛ൻᦛ✢ߦࡅ
ࠬ࠹࡝ࠪࠬࠍ␜ߔ߽ߩ߇޽ࠅ‫ޔ‬න৻ಽሶ⏛⍹
Single Molecule Magnetߣ๭߫ࠇߡ޿ࠆ‫ޕ‬ᚒ‫ޔߪߢࡊ࡯࡞ࠣߩޘ‬Mn4 ᩭ‫ޔ‬
Mn18 ᩭ‫ޔ‬Ni4 ᩭߥߤߩᄙጘߦᷰࠆ‛⾰⟲ߦኻߒߡ‫ޔ‬ᭂૐ᷷᷷ᐲ㗔ၞߩ⏛ൻ᷹ቯ
੤ᵹᏪ⏛₸‫ޔ‬㕒⏛ൻ᷹ቯࠍⴕ޿ߘߩᕈ
⾰ࠍ᣿ࠄ߆ߦߒߡ߈ߚ‫⚿ޕ‬᥏ౝߢಽሶ㑆ߩ⋧੕૞↪߇ᒙߊℂᗐ⊛ߥ SMM ߣߒߡሽ࿷ߔࠆ Mn4 ᩭ㍲૕‫ޔ‬ㅒߦනಽሶ⏛⍹
㑆ߩ⋧੕૞↪ߦࠃࠅૐ᷷ߢ෻ᒝ⏛ᕈߦࠝ࡯࠳࡯ߔࠆ Mn4 ᩭ㍲૕ߥߤߩૐ᷷ߦ߅ߌࠆ⏛᳇᜼േߦߟ޿ߡႎ๔ߔࠆ‫ޕ‬
66
B2
ள႗͈ܳ໦८‫͈߸۾‬႟ത͂௖‫۾‬ಿ
ਛ᧛ ␭৻㧔᧲ᄢ↢↥⎇㧕
⚛ബ⿠ߩಽᢔ㑐ଥߩ㔖ὐߩ⯯ㇱߣ⋧㑐㐳ㅒᢙ߇╬ߒ޿ߎߣࠍ‫ޔ‬෩ኒߦ⸃ߌࠆᮨဳ
ࡂࡃ࡯࠼ᮨဳ[1]‫ޔ‬S=1/2XYZ ᮨဳ
[2]ߦߟ޿ߡ⏕⹺ߒߚ‫ޕ‬෩ኒߦ⸃ߌߥ޿ᮨဳߦ߅޿ߡ‫⚛ⶄޔ‬ㆇേ㊂ⓨ㑆ߩಽᢔ㑐ଥߩ㔖ὐࠍല₸⦟ߊតߔߚ߼ߩᚻᴺߣߒ
ߡ‫ޔ‬ㆇേ㊂Ṷ▚ሶߦቯ⯯ᢙࡌࠢ࠻࡞ࡐ࠹ࡦࠪࡖ࡞(ig)ࠍઃടߒ‫ޔ‬㊂ሶ♽ࠍ㕖ࠛ࡞ࡒ࡯࠻ൻߔࠆᚻᴺ[3]ࠍ⚫੺ߔࠆ‫ޕ‬g ࠍჇ
߿ߔߎߣߦࠃࠅ‫ޔ‬ၮᐩ⁁ᘒߣബ⿠⁁ᘒ㑆ߩࠛࡀ࡞ࠡ࡯ࠡࡖ࠶ࡊ߇ẩࠇ‫ޔ‬ၮᐩࠛࡀ࡞ࠡ࡯߇ⶄ⚛ൻߔࠆὐ gc ࠍ᳞߼ࠆ‫ߎޕ‬
ߩὐ gc ߪⶄ⚛ㆇേ㊂ⓨ㑆ౝߩ㔖ὐߩ⯯ㇱࠍਈ߃ࠆ‫᦭ޕ‬㒢♽ߦ߅޿ߡ gc ࠍ᳞߼‫ޔ‬ή㒢♽ߦᄖᝌߔࠆߎߣߦࠃࠅ⋧㑐㐳ㅒᢙ
ࠍᲧセ⊛♖ᐲࠃߊᓧࠄࠇࠆߎߣࠍ‫ޔ‬ᰴㄭធ⋧੕૞↪ߩ޽ࠆࡂࠗ࠯ࡦࡌ࡞ࠣ㎮ߦߟ޿ߡ␜ߔ‫ޕ‬
[1] Y. Nakamura and N. Hatano, in preparation.
[2] K. Okunishi, Y. Akutsu, N. Akutsu and T. Yamamoto, Phys. Rev. B 64(2001) 104432.
[3] Y. Nakamura and N. Hatano, Physica B 378-380 (2006) 292, J. Phys. Soc.Jpn. 75 (2006) 114001. B3
Distribution of non-trivial gapless points in single molecule magnets and
dynamical driven systems
⢀੗ ᢘ๋㧔᧲ᄢℂ㧕
ㄭᐕ‫ޔ‬ታ㛎ᛛⴚߩㅴᱠߦ઻޿৻ߟߩಽሶߩ⏛ᕈࠍ᷹ቯߢ߈ࠆࠃ߁ߦߥߞߡ޿ࠆ‫ޕ‬Fe8(S=10)ߦ߅޿ߡ tunnelsplitting
߇ᮮ⏛႐ߩਅߢᝄേߔࠆߎߣ߇᷹ⷰߐࠇߚ‫ޔߪࠇߎޕ‬Kramers ߩ❗ㅌߦࠃࠆ߽ߩߢߪߥ޿㕖⥄᣿ߥ❗ㅌߦࠃࠆ߽ߩߢ޽
ࠆ‫ޔߪ⽎⃻ߩߎޕ‬㊂ሶ૏⋧
Berry phaseߩᐓᷤലᨐߢ޽ࠆߣℂ⸃ߐࠇߡ޿ࠆ‫ߦࠇߎޕ‬ኻߒ‫ޔ‬ᚒ‫ߪޘ‬ኻ⒓ᕈߦၮߠߊ⠨ኤ
߆ࠄ‫߇⽎⃻ߩߎޔ‬ੑᰴߩ⇣ᣇᕈࠍᜬߟනಽሶ⏛⍹ߩ႐วߦߪ৻⥸⊛ߦ⿠ߎࠆߎߣࠍ␜ߒߚߩߢႎ๔ߔࠆ‫ᤨޔߚ߹ޕ‬㑆ߦଐ
ሽߔࠆ੤ᵹ⏛႐ࠍශടߒߚ႐ว‫ޔ‬Floquet Ṷ▚ሶߩ࿕᦭୯
Floquet energy߇❗ㅌߒ‫߇ࠬࠢࡒ࠽ࠗ࠳ޔ‬ᛥ೙ߐࠇࠆ⃻⽎߇
⿠ߎࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ‫ߩߎޕ‬໧㗴ߦߟ޿ߡ߽‫ޔ‬࿕᦭୯ߩ㕖⥄᣿ߥ❗ㅌߣ޿߁ⷰὐ߆ࠄߩ⠨ኤࠍⴕߥ߁‫ޕ‬
B4
ၾঊΑάϋࠏ̤̫ͥͅΠευΐ΃σಉ੬͂΀ϋΗϋΈσιϋΠ΀ϋΠυάȜ
ᐔ㊁ ፾᣿㧔᧲ᄢᎿ㧕
ㄭᐕ‫ޔ‬ฎౖ⊛⒎ᐨᄌᢙߢ߁߹ߊ․ᓽઃߌࠄࠇߕ‫ޔ‬㊂ሶᕈ߇㊀ⷐߢ޽ࠆ㊂ሶᶧ૕ࠍ࠻ࡐࡠࠫࠞ࡞ߥ⒎ᐨ⋧ߣߒߡ඙೎ߔࠆ
⹜ߺ߇ⴕࠊࠇߡ޿ࠆ‫৻ޕ‬ᣇߢㄭᐕ㊂ሶᖱႎ‛ℂߩಽ㊁ߢቯ⟵ߐࠇߚࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ࠛࡦ࠻ࡠࡇ࡯߇㊂ሶᶧ૕ߩᄢዪ⊛
ߥ․ᓽઃߌߦ᦭↪ߢ޽ࠆߎߣ߇ࠊ߆ߞߡ߈ߚ‫ߩߎޕ‬㊂ߪࡃ࡞ࠢߥ♽ߢߩ㊂ߢ޽ࠆߦ߽߆߆ࠊࠄߕ‫ޔ‬Ⴚ⇇߇ሽ࿷ߔࠆߣ߈ߩ
ࠛ࠶ࠫ⁁ᘒߩ᦭ήߣ⋥ធ㑐ଥߒߡ߅ࠅ‫⁁ࠫ࠶ࠛޔ‬ᘒߩ᦭ήߦኻᔕߒߡ㕖⥄᣿ߥ୯ࠍߣࠆ‫⎇ᧄޕ‬ⓥߢߪ S=1/2 ੑ㊂૕ࠬࡇ
ࡦ㎮෸߮ Haldane ࠬࡇࡦ♽ߢ޽ࠆ S=1 XXZ ࠬࡇࡦ㎮ߩࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ࠛࡦ࠻ࡠࡇ࡯ࠍᢙ୯⊛ߦ⸘▚ߒ᭽‫ࠍ⋧ߥޘ‬
⺞ߴߚ‫ ߚ߹ޕ‬AKLT ࡕ࠺࡞ߩၮᐩ⁁ᘒߢ޽ࠆ VBS ⁁ᘒߦኻߒߡ᜛ᒛߒߚォㅍⴕ೉ߩᣇᴺࠍ↪޿ߡࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻
ࠛࡦ࠻ࡠࡇ࡯ߦߟ޿ߡ⼏⺰ߒߚ‫ޕ‬
67
B5
1 GPa ͈́ࣞ͘գ‫ޑئ‬ঽાˡ˯ˮΏΑΞθ͈‫ٳ‬อ͂ΑάϋΆλΛίࠏ͈͒؊ဥ
ᰞ੗ ᢘඳ㧔␹ᚭᄢ⎇ⓥၮ⋚࠮㧕
⏛႐ਛߢ Bose-Einstein ಝ❗ࠍ↢ߕࠆࠬࡇࡦࠡࡖ࠶ࡊ♽ TlCuCl3‫ޔ‬KCuCl3 ߦ߅޿ߡߪߘߩ࿶ജലᨐߦ߽ᄢᄌᵈ⋡߇
㓸߹ߞߡ޿ࠆ‫ޕ‬ᚒ‫ ߦߢ߹ࠇߎߪޘ‬1GPa ⒟ᐲ߹ߢߩ࿶ജਅߢᒝ⏛႐ ESR ᷹ቯ߇น⢻ߥࠪࠬ࠹ࡓࠍ㐿⊒ߒ‫ ߚ߹ޔ‬0.75
GPa ⒟ᐲ߹ߢߩ࿶ജ▸࿐ߦ㑐ߒߡߪ 0.01 GPa ⒟ᐲߩ♖ᐲߢセᱜน⢻ߥ ESR ⁛⥄ߩ࿶ജセᱜᣇᴺࠍ⏕┙ߒߚ‫ޕ‬หࠪࠬ࠹
ࡓࠍ↪޿ߡ KCuCl3 ߩ࿶ജਅᒝ⏛႐ ESR ࠍ 0.73GPa ߹ߢߩ࿶ജ▸࿐‫ޔ‬16 T ߹ߢߩ⏛႐▸࿐ߢⴕߞߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ၮᐩ
৻㊀㗄߆ࠄബ⿠ਃ㊀㗄߳ߩ⋥ធㆫ⒖ࠍ᷹ⷰߒ‫ޔ‬࿶ജߦ઻ߞߡࠬࡇࡦࠡࡖ࠶ࡊ߇ᷫዋߔࠆߎߣࠍ⋥ធ⊛ߦ᷹ⷰߔࠆߎߣߦᚑ
ഞߒߚ‫ ߦ․ޕ‬0.73 GPa ߦ߅޿ߡߪ‫ޔ‬Ᏹ࿶ਅߢ 630 GHz ⒟ᐲߢ޽ߞߚࠡࡖ࠶ࡊ߇ 220 GHz ⒟ᐲߦ߹ߢᷫዋߒ‫ߚ߹ޔ‬ബ⿠
ਃ㊀㗄ߩ Sz = 1 ࡉ࡜ࡦ࠴߇ၮᐩ⁁ᘒߣ੤ࠊࠆ⏛႐
㧙8Tએ਄ߢ BEC ࠍ↢ߓߡ޿ࠆߎߣࠍ␜ໂߔࠆ⚿ᨐ߇ᓧࠄࠇߚ‫⻠ޕ‬
Ṷߢߪߎࠇࠄߩ⹦⚦ߦߟ޿ߡႎ๔ߔࠆ‫ޕ‬
B6
΂ςΫϋ߿ၤ‫ا‬໤ Mn2AS4(A = Si, Ge)̤̫ͥͅఉਹႉ‫࡛ٮ‬ય
ᄢਠ ⎇਽㧔᧲ᄢ‛ᕈ⎇㧕
ᣂᄸ⏛ᕈ‛⾰ Mn2AS4
A = Si, Geߩࠬࡇࡦࡈࡠ࠶ࡊ⏛႐ߪ‫┹⋧ޔ‬ว
ࡈ࡜ࠬ࠻࡟࡯࡚ࠪࡦߩᏫ⚿ߣߒߡ⇣Ᏹߥ᷷ᐲᄌ
ൻࠍ␜ߔ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ᓥ᧪‛⾰ߢߪ⷗ࠄࠇߥ޿ᄙ㊀⥃⇇ὐ߇⏛႐᷷ᐲ⋧࿑ߦ⃻ࠇࠆ‫⋧ߩߎޕ‬࿑ߣ⏛᳇ኻ⒓ᕈࠍ↪޿ߚ⼏
⺰ߦࠃࠅ‫ߩ♽ޔ‬ᣂᄸߥ⏛ᕈ㧙2K ⒟ᐲߩ⁜޿᷷ᐲ㗔ၞߢ᷹ⷰߐࠇࠆᒙᒝ⏛ᕈ㧙߇ℂ⸃ߢ߈ࠆ‫ޕ‬
K. Ohgushi, and Y. Ueda, Phys. Rev. Lett. 95, 217202 (2005).
B7
S=1 ΃Όι Heisenberg ฽‫ޑ‬ঽ଻ఘ m-MPYNNȆBF4 ͈ঽ‫ا‬ίρΠȜ
᧻ਅ
℉㧔ฬฎደᄢℂ㧕
᦭ᯏ⏛ᕈ૕ m-MPYNN࡮BF4 ߦ߅޿ߡߪ 2 ߟߩ S=1/2 ࡜ࠫࠞ࡞ࠬࡇࡦ߇ 20K એਅߢᒝ⏛ᕈ⊛ߦ⚿วߒ‫ޔ‬S=1 ࠳ࠗࡑ࡯
ߦࠃࠆ 2 ᰴరࠞࠧࡔᩰሶ߇ᒻᚑߐࠇࠆ‫࡯ࡑࠗ࠳ޕ‬㑆⋧੕૞↪ߪ⚂ 3K ߢ෻ᒝ⏛ᕈ⊛ߥߚ߼ࡈ࡜ࠬ࠻࡟࡯࠻ߒߡ߅ࠅ‫ޔ‬㔖
⏛႐ߢߪ⚂ 0.2K ߩࠬࡇࡦࠡࡖ࠶ࡊࠍᜬߟ㕖⏛ᕈၮᐩ⁁ᘒ߇᷹ⷰߐࠇࠆ‫ߩߎޕ‬㊂ሶ⊛ߥၮᐩ⁁ᘒߦߟ޿ߡߒࠄߴࠆߚ߼‫ޔ‬
ᚒ‫ ߪޘ‬Faraday ᴺߦࠃࠆ⏛ൻ᷹ቯߣ‫⏛ޔ‬ൻߩᓸಽ୯ߦ޽ߚࠆ੤ᵹᏪ⏛₸ߩ⏛႐ਛ᷹ቯࠍ߅ߎߥ޿‫⏛ߩߎޔ‬ᕈ૕߇ 0.1K
ㄭறߢߪ㘻๺⏛ൻߩ 1/2‫ޔ‬3/4 ߦ޽ߚࠆ⏛ൻߢࡊ࡜࠻࡯ࠍᜬߟߎߣࠍ᣿ࠄ߆ߦߒߚ‫⏛ߪ࡯࠻࡜ࡊߩߎޕ‬႐ਛߩၮᐩ⁁ᘒࠍ
෻ᤋߒߚ߽ߩߣ⠨߃ࠄࠇࠆ߇‫ࡔࠧࠞޔ‬ᩰሶߩන૏ᩰሶࠍ⠨߃ߚ႐วߢߪ⺑᣿ߢ߈ߕ‫ࠅࠃޔ‬ᄢ߈ߥࠨࠗ࠭ߩၮᧄᩰሶࠍᜬߟ
ၮᐩ⁁ᘒߩሽ࿷ߣᰴㄭធ⋧੕૞↪ߥߤߩ㐳〒㔌ߩ⋧੕૞↪ߩነਈࠍ␜ໂߒߡ޿ࠆ‫ޕ‬
B8
ρζϋ८၄́۷௶̱̹ TlCoCl3 ͈ঽ‫ܨ‬႗ܳ
㤥ᳯ ᥍ᒾ㧔਄ᥓᄢℂᎿ㧕
ᢳᣇ᥏ᱡࠍᜬߟᡆ৻ᰴర Ising ෻ᒝ⏛ᕈ૕ TlCoCl3 ߩૐ᷷‫⏛ޔ‬႐ਅߢߩ࡜ࡑࡦᢔੂ᷹ቯࠍⴕߞߚ‫ޕ‬෻ᒝ⏛ᕈ⋧ߢߪ
2J
= 118.5 cm1ઃㄭߦ⏛႐ଐሽᕈࠍᜬߟⶄᢙߩ࡜ࡑࡦ࡮ࡇ࡯ࠢ߇᷹ⷰߐࠇߚ‫ߪࠢ࡯ࡇߩࠄࠇߎޕ‬ਛᕈሶᢔੂߢ߽᷹ⷰߐ
ࠇߡ޿ࠆ‫ޔ‬ᡆ৻ᰴర Ising ㎮․᦭ߩ⏛᳇ബ⿠
domain wall pair excitations, DWPEsࠍ᷹ⷰߒߚ߽ߩߢ޽ࠅ‫ޔ‬෻ᒝ⏛ᕈ
⋧ߢ↢ߓߚౝㇱ⏛႐ߦࠃߞߡ㊂ሶൻߐࠇߚ DWPEs ࠍ᷹ⷰߒߡ޿ࠆ߽ߩߢ޽ࠆ‫⸃ߩ࡞࠻ࠢࡍࠬ࡮ࡦࡑ࡜ޕ‬ᨆࠃࠅ‫ߩߎޔ‬
‛⾰ߩౣ㓞ធ‫╙ޔ‬ੑ㓞ធ੤឵⋧੕૞↪ࠍ᳞߼ߚ‫ޕࠆߔ⺰⼏ߊߒ⹦ߦᤨ⴫⊒ߪ⚦⹦ޕ‬ዏ‫⎇ߩߎޔ‬ⓥߪቝౝసᚑ‫ޔ‬ᄢᴛ᣿‫ޔ‬
㑐ᩮᥓᐘ㧔਄ᥓᄢℂᎿ㧕⷏⣁ᵗ৻㧔᧲੩ᅚሶකᄢ‛ℂ㧕‫ޔ‬ട⮮ᔀ਽㧔ජ⪲ᄢᢎ⢒㧕ߣߩ౒ห⎇ⓥߢ޽ࠆ‫ޕ‬
68
B9
ACuCl3 ͈ρζϋ८၄
ᣣਅㇱ ᤩᐔ㧔਄ᥓᄢℂᎿ㧕
㊂ሶࠬࡇࡦ࠳ࠗࡑ࡯♽‛⾰ ACuCl3
A = Tl, Kߢߪ෻ᒝ⏛ᕈ࠳ࠗࡑ࡯߇ਃᰴర⊛ߦ⚿วߒߡ޿ࠆ‫࡯ࡑࠗ࠳ޕ‬㑆ߩ⋧੕૞
↪ߦࠃߞߡ‫࠻࠶࡟ࠣࡦࠪޔ‬ၮᐩ⁁ᘒߣ‫ޔ‬ബ⿠࠻࡝ࡊ࡟࠶࠻⁁ᘒߣߩ㑆ߦࠬࡇࡦࠡࡖ࠶ࡊ = 5.5cm1 for A = Tl, 22 cm1
for A=Kࠍᜬߟ‫ޕ‬ᚒ‫ߪޘ‬㕖⏛ᕈਇ⚐‛ Mg ࠍ࠼࡯ࡊߒ‫ࠍ࡯ࡑࠗ࠳ޔ‬უߒߚᤨߣ‫ࠍ࡯ࡑࠗ࠳ޔ‬უߐߕߦ A ࠗࠝࡦ⟎឵ߒߚ
ᤨߩ‫ޔ‬ੑᰴߩ⏛᳇࡜ࡑࡦᢔੂߩ♽⛔⊛ߥᄌൻࠍ᷹ⷰߒߚ‫⏛ޕ‬᳇࡜ࡑࡦᢔੂࠬࡍࠢ࠻࡞ߩ┙ߜ਄߇ࠆࠛࡀ࡞ࠡ࡯߇ࠬࡇࡦ
ࠡࡖ࠶ࡊࠛࡀ࡞ࠡ࡯ߩੑ୚ߦ⋧ᒰߔࠆ‫⻠ޕ‬Ṷߢߪ⏛᳇࡜ࡑࡦᢔੂߦࠃࠅ᳞߼ߚ TlCu1-xMgxCl3‫ޔ‬Tl1-yKyCuCl3 ߩ‫࡞ࡀࠛޔ‬
ࠡ࡯ࠡࡖ࠶ࡊߩ࠼࡯ࡊ㊂ଐሽᕈߣ‫⏛ޔ‬᳇࡜ࡑࡦᢔੂࠬࡍࠢ࠻࡞ߩ᷷ᐲ‫⏛ޔ‬႐ଐሽᕈߩ⹦⚦ࠍႎ๔ߔࠆ‫ޕ‬
B10
಼‫خ‬ୟ໦΃ͼρσεΛΜ࿅߿͈ͼΐϋΈഎΑβ·Πσ͂ັଟ̳ͥ
XXZ ߿Αάϋङ͈ L(sl2)చઠ଻
⷏㊁ᤩᓼ㧔᧲ᄢ↢↥⎇㧕
⿥นⓍಽࠞࠗ࡜࡞ࡐ࠶࠷
SCPᮨဳߦ⃻ࠇࠆࠗࠫࡦࠣ⊛ࠬࡍࠢ࠻࡞[1]ߣ‫ߣࠇߘޔ‬น឵ߥォㅍⴕ೉ࠍᜬߟ XXZ ဳࠬࡇࡦ
㎮
౹㔖 Bazhanov-Stroganov
NBSᮨဳ[2]ߩࠛࡀ࡞ࠡ࡯❗ㅌⓨ㑆ߩኻᔕߦߟ޿ߡႎ๔ߔࠆ[3]‫ ߕ߹ޕ‬NBS ᮨဳ߇޽ࠆ
ㇱಽⓨ㑆ߢ࡞࡯ࡊઍᢙ L(sl2)ߩኻ⒓ᕈࠍᜬߟߎߣࠍ␜ߔ‫ޕ‬ᰴߦߎߩኻ⒓ᕈߦࠃࠆ❗ㅌⓨ㑆ࠍ․ᓽઃߌࠆ Drinfeld ᄙ㗄ᑼ
ࠍ⸘▚ߒ‫ ߇ࠇߎޔ‬SCP ᄙ㗄ᑼ[1]ߣ╬ߒ޿ߎߣࠍ⷗ࠆ‫ߩߎޕ‬੐ታߪ NBS ᮨဳߩ❗ㅌⓨ㑆ߣ SCP ᮨဳߩࠗࠫࡦࠣ⊛ࠬࡍࠢ
࠻࡞ࠍਈ߃ࠆㇱಽⓨ㑆ߣߩኻᔕࠍ␜ໂߒߡ޿ࠆ‫
ޕ‬಴ญື↢᳁ߣߩ౒ห⎇ⓥ
[1] Baxter, J. Stat. Phys. 57 (1989) 1.
[2] Bazhanov and Stroganov, J. Stat. Phys. 59 (1990) 799.
[3] Nishino and Deguchi, Phys. Lett. A356 (2006) 366.
B11
֚ষࡓ‫ ࠏࣣއ‬Rb2Cu2Mo3O12 ͈ࣞգ‫ئ‬ঽ‫௶ا‬೰̤͍͢ঽ‫ܨ‬๤෎͈ঽા་‫ا‬
ựፒ ᥓᓆ㧔਄ᥓᄢℂᎿ㧕
ᒝ ⏛ ᕈ ߩ ╙ ৻ ㄭ ធ ੤ ឵ ⋧ ੕ ૞ ↪ (J1) ߣ ෻ ᒝ ⏛ ᕈ ߩ ╙ ੑ ㄭ ធ ੤ ឵ ⋧ ੕ ૞ ↪ (J2) ߇ ┹ ว ߒ ߚ ৻ ᰴ ర ㊂ ሶ ࠬ ࡇ ࡦ ♽
Rb2Cu2Mo3O12 ߦߟ޿ߡ‫ߦߢ߹ࠇߎޔ‬ᄙ⚿᥏⹜ᢱߩ㜞࿶ਅߢߩᏪ⏛₸࡮⏛ൻ᷹ቯߣ‫ޔ‬DMRG ߣ෩ኒኻⷺൻߩ⸘▚⚿ᨐߣ
Ყセ߆ࠄ‫ޔ‬ട࿶ߦࠃࠅၮᐩ⁁ᘒ߇ォ⒖ߔࠆ⥃⇇୯
α=0.258ߦㄭߠߊߎߣࠍ᣿ࠄ߆ߦߒߚ‫੹ޕ‬࿁ߩ⊒⴫ߢߪ‫ޔ‬ዊဳ࿶ജ
࠮࡞ࠍ↪޿ߚ㜞࿶ਅߢߩ 18T ߹ߢߩ⏛ൻ᷹ቯࠍⴕ޿‫ޔ‬㘻๺⏛႐ߩ⏛႐ᄌൻߦߟ޿ߡ⏛ൻ⸘▚ߩ⚿ᨐߣᲧセߔࠆߎߣߦࠃ
ࠅ‫ޔ‬ၮᐩ⁁ᘒ߇⥃⇇୯ߦㄭߠߊ௑ะߦ޽ࠆߎߣ‫⏛ޔߚ߹ޕ‬႐ਅߢߩᲧᾲ᷹ቯ߆ࠄ⏛᳇Ყᾲߩ⏛႐ᄌൻࠍ⷗Ⓧ߽ࠅ‫ޔ‬
DMRG ⸘▚ߣᲧセߒߚ⚿ᨐߦߟ޿ߡ⊒⴫ߔࠆ੍ቯߢ޽ࠆ‫⏛ޔߦ․ޕ‬᳇Ყᾲߩ⏛႐ᄌൻߩᲧセߦߟ޿ߡߪ‫⃻ޔ‬࿷ߩ᷹ቯ᷷
ᐲ▸࿐ߢߪ FAF ㎮ߣ AFF ㎮ߩਔᣇߢታ㛎⚿ᨐࠍ⺑᣿ߢ߈ࠆߎߣ߆ࠄ‫ࠅࠃޔ‬ૐ᷷╬ߢߩ᷹ቯ߿න⚿᥏ࠍ↪޿ߚ߇⎇ⓥ
߇ᔅⷐߣߐࠇߡ޿ࠆ‫⎇ߩߎޕ‬ⓥߪ‫ޔ‬਄ᥓᄢℂᎿߩ⿒ᧁᥰ‫ޔ‬㤥ᳯ᥍ᒾ‫ޔ‬᪀ේ⧷᮸‫ޔ‬㑐ᩮᥓᐘ‫᧚‛ޔ‬ᯏ᭴ߩ㐳⼱ᱜม‫ޔ‬ಽሶ⎇
ߩ೨ፉዷ਽‫ޔ‬ၯ₹ᄢℂߩᚽ⾐⵨ᄥ‫᧲ޔ‬ᄢ‛ᕈ⎇ߩ਄ᐥ⟤਽ߣߩ౒ห⎇ⓥߢ޽ࠆ‫ޕ‬
69
B12
S=1/2 ΑάϋΘͼζȜࠏ ND4CuCl3 ͈ঽ‫ܨ‬౮଻८၄
ዊ㊁ ବ㓶㧔᧲Ꮏᄢ㒮ℂᎿ㧕
S=1/2 ࠬࡇࡦ࠳ࠗࡑ࡯♽ NH4CuCl3 ߪ⏛ൻㆊ⒟ߦ߅޿ߡ㘻๺⏛ൻߩ 1/4 ߣ 3/4 ߦ⏛ൻࡊ࡜࠻࡯ࠍᜬߟ‛⾰ߢ޽ࠆ‫ߎޕ‬
ߩ⏛ൻࡊ࡜࠻࡯ߪ‫ޔ‬bゲᣇะߦ࡙࠾࠶࠻࠮࡞߇ 2 ୚ߦߥࠆ᭴ㅧ⋧ォ⒖ߦࠃߞߡ‫ ߇࡯ࡑࠗ࠳ޔ‬4 ⒳㘃ߩ㕖╬ଔߥࠨࠗ࠻ߣ
ߥࠆߎߣߦ⿠࿃ߔࠆ‫৻ޕ‬ᣇߢ‫ޔ‬ฦ⏛႐ਛߦ߅ߌࠆ⏛᳇᭴ㅧߪ߹ߛ⸃᣿ߐࠇߡ޿ߥ޿⺖㗴ߢ޽ࠆ‫੹ޕ‬࿁ߪ‫ޔ‬ේሶജᯏ᭴ߢ
ⴕߞߚ ND4CuCl3 ߩ⏛᳇ᒢᕈᢔੂߩ⚿ᨐࠍႎ๔ߔࠆ‫⏛ޕ‬᳇ࡉ࡜࠶ࠣὐߪ⥃⇇⏛႐એ਄ߩ⏛႐ਛߩ TlCuCl3 ߣห᭽ߦ
ቶ᷷
᭴ㅧࠍ࡙࠾࠶࠻ߣߒߚߣ߈ߩh ߇ᢛᢙ‫ޔ‬l ߇ᄸᢙߩὐߢ᷹ⷰߐࠇߚ߇‫ࠄࠇߘޔ‬એᄖߩ․ᓽ⊛ߥ⏛᳇ࡉ࡜࠶ࠣὐߪ⊒⷗ߢ߈
ߥ߆ߞߚ‫⻠ޕ‬Ṷߢߪ࠺࡯࠲߆ࠄ੍᷹ߐࠇࠆ⏛᳇᭴ㅧߦߟ޿ߡ⼏⺰ߔࠆ‫ޕ‬
B13
SɁ1/2 1 ষࡓ฽‫ޑ‬ঽ଻ఘ KCuGaF6 ̤̫ͥͅঽાညܳΆλΛί͂ঽ‫ܨ‬႗ܳ
᫪ፒ ᪸ᕺሶ㧔᧲Ꮏᄢ㒮ℂᎿ㧕
KCuGaF6 ߪනᢳ᥏ߢ Cu2+ߣ Ga3+߇ࡄࠗࡠࠢࡠࠕဳᩰሶࠍᒻᚑߒߡ޿ࠆ‫ޕ‬Ga3+߇㕖⏛ᕈߢ޽ࠆߚ߼‫ޔ‬㓞ធߔࠆ Cu2+㑆
ߩ੤឵⋧੕૞↪ߪ৻ᰴర⊛ߥᕈ⾰ࠍ᦭ߒߡ޿ࠆ‫ޕ‬KCuGaF6 ߪߘߩ⚿᥏᭴ㅧ߆ࠄ‫ޔ‬੤ᦧ g ࠹ࡦ࠰࡞߿ DzyaloshinskyMoriya ⋧੕૞↪ߩሽ࿷߇⸵ߐࠇࠆ‫ޔ߼ߚߩߎޕ‬ᄖㇱ⏛႐ࠍട߃ࠆߣߎࠇߦု⋥ߥ੤ᦧ⏛႐߇᦭ല⊛ߦ↢ߓࠆ‫ߩߎޕ‬੤ᦧ
⏛႐ߪᏪ⏛₸ߩ᷹ቯߦࠃࠅታ㛎⊛ߦ᷹ⷰߐࠇࠆ‫ޔߚ߹ޕ‬੤ᦧ⏛႐ߩሽ࿷ߦࠃࠅ⏛႐ߩߴ߈ߢ⊒㆐ߔࠆ⏛႐⺃⿠ࠡࡖ࠶ࡊ߇
Ყᾲ᷹ቯߦ߅޿ߡ᷹ⷰߐࠇࠆ‫ߩߎޕ‬᭽ߥ⃻⽎ߪ‫ޔ‬S=1/2 ࡂࠗ࠯ࡦࡌ࡞ࠣဳ෻ᒝ⏛ᕈ૕ Cu benzoate ߿Ꮧ࿯㘃ൻว‛
Yb4As3 ߦ߅޿ߡએ೨߆ࠄ⍮ࠄࠇߡ޿ࠆ‫ߦࠄߐޕ‬ᚒ‫ ߩߎޔߪޘ‬KCuGaF6 ߦߟ޿ߡᒝ⏛႐ ESR ᷹ቯࠍⴕ޿‫ޔ‬ESR ࠬࡍࠢ
࠻࡞ߩ᷷ᐲᄌൻ߿๟ᵄᢙߩ౒㡆⏛႐ଐሽᕈࠍ⺞ߴߚ‫ޔߡߒߘޕ‬KCuGaF6 ߇㕖✢ᒻബ⿠ߩઍ⴫⊛ߥᮨဳߢ޽ࠆ㊂ሶ SineGordon(SG) ᮨဳߢឬߊߎߣ߇ߢ߈‫⏛ ޔ‬႐⺃⿠ࠡࡖ࠶ࡊ߇ SG ᮨဳߦ߅ߌࠆࡉ࡝࡯ࠩ࡯ബ⿠ߦኻᔕߔࠆߎߣࠍ⷗޿ߛߒ
ߚ‫ⷰߦઁߩߘޔߚ߹ޕ‬᷹ߐࠇߚ㜞ᰴߩࡉ࡝࡯ࠩ࡯ബ⿠߿ࠬࡇࡁࡦബ⿠ߦߟ޿ߡߩ⸃ᨆ⚿ᨐߦߟ޿ߡ߽ㅀߴࠆ‫ޕ‬
B14
֚ষࡓΑάϋࠏ SrCo2V2O8 ͈ঽ‫ݷܨ‬൲
૗ 㐳ᝄ㧔᧲ᄢ‛ᕈ⎇㧕
ㄭᐕ‫৻ޔ‬ᰴర㊂ሶࠬࡇࡦ⏛ᕈ૕ߩត⚝߇ᵈ⋡ࠍᶎ߮ߡ߅ࠅ‫⥝ޔ‬๧ᷓ޿⏛ᕈ⃻⽎߇ᡆ 1 ᰴరࠬࡇࡦ㎮ߩൻว‛ߦ⷗ࠄࠇ
ߡ޿ࠆ‫ᦨޕ‬ㄭ‫ޔ‬ᚒ‫৻ߪޘ‬ᰴరࠬࡇࡦ㎮ߩ⚿᥏᭴ㅧࠍᜬߟ SrCo2V2O8 ࠍ⷗ߟߌߚ‫ߪ࡞ࡊࡦࠨᧃ☳ޕ‬࿕⋧෻ᔕߢ‫ޔ‬න⚿᥏ߪ
ࡈ࡜࠶ࠢࠬࠍ↪޿ߡᓢ಄ᴺߢ₪ᓧߒߚ‫⏛ޕ‬ൻ₸‫⏛ޔ‬ൻ߅ࠃ߮Ყᾲ᷹ቯ߆ࠄ⏛᳇᜼േࠍ⺞ߴߚ‫⏛ޕ‬ൻ₸࠺࡯࠲߆ࠄ
SrCo2V2O8 ߪ Ising ࠠࡖࡦ࠻෻ᒝ⏛ᕈߩᝄࠆ⥰޿ࠍ␜ߐࠇ‫ޔ‬3K ߣ 5K ߩઃㄭߦ 2 ߟߩ⋧ォ⒖ࠍ␜ໂߐࠇߡ޿ࠆ‫ޕ‬෶‫⏛ޔ‬
ൻ࠺࡯࠲߆ࠄ⥃⇇⏛႐ 4T ߣ 7T ߪߘࠇߙࠇ cゲߦᐔⴕߣု⋥ߦ߆ߌࠆ႐ว‫⏛ޔ‬႐⺃⿠⋧ォ⒖߇⷗ࠄࠇࠆ‫ޕ‬ૐ᷷⏛ൻ₸ߣ
Ყᾲ࠺࡯࠲ߦၮߠ޿ߚ⏛᳇⋧࿑߆ࠄ⏛႐⺃⿠⋧ォ⒖ߪࠬࡇࡦࡈࡠ࠶ࡊߢߪߥߊ‫ޔ‬ਔ⠪౒ߦ෻ᒝ⏛ᕈ㧙Ᏹ⏛ᕈ⋧ォ⒖ߢ޽ࠆ
ߎߣ߇ಽ߆ߞߚ‫⻠ޕ‬Ṷߢߪ SrCo2V2O8 ߩၮᐩ⁁ᘒߣ⏛႐⺃⿠⋧ォ⒖ߦߟ޿ߡ⹦⚦ߦႎ๔ߔࠆ‫ޕ‬
B15
ඵষࡓঽ଻ఘ(CuX)LaNb2O7ȪX=Cl, Brȫ͈ NMR ௶೰
የᒻ ⺈ਯ㧔᧲ᄢ‛ᕈ⎇㧕
ࠗࠝࡦ੤឵ᴺߦࠃࠅวᚑߐࠇߚ(CuX)LaNb2O7
X=Cl, Brߪ Cu ߩ㈩⟎߇ᱜᣇᩰሶߦㄭ޿᭴ㅧࠍߣࠆੑᰴర⏛ᕈ૕ߢ޽
ࠆ‫ޕ‬ၮᐩ⁁ᘒߪ X=Cl ߩߣ߈ߪࠬࡇࡦ৻㊀㗄⁁ᘒ‫ޔ‬Br ߩߣ߈ߪ collinear order ߣߥࠆ‫(ߦ․ޕ‬CuCl)LaNb2O7 ߢ⷗ࠄࠇࠆ
70
ࠬࡇࡦࠡࡖ࠶ࡊߪ‫⏛ޔ‬ൻᦛ✢߆ࠄ᳿߹ࠆ⥃⇇⏛႐
10 Tߣਛᕈሶ‫ޔ‬Ყᾲ‫ޔ‬Ꮺ⏛₸‫ޔ‬NQR ╬߆ࠄ⷗Ⓧ߽ࠄࠇߚࠡࡖ࠶ࡊߩ
ᄢ߈ߐ
23-27Kߦᄢ߈ߥ㘩޿㆑޿߇޽ࠅ‫⏛ߩߘޔ‬᳇ബ⿠ߦ㑐ߒߡ⥝๧߇ᜬߚࠇߡ޿ࠆ‫ߦ⾰‛ߩߎࠄ߇ߥߒ߆ߒޕ‬㑐ߒߡ
ߪ‫ޔ‬ᱜ⏕ߥ⚿᥏᭴ㅧ߇ᧂߛቯ߆ߢߪߥߊ‫ޔ‬Cu ߩ d 㔚ሶ゠㆏⁁ᘒ߿ exchange path ╬ࠍ᳿ቯߔࠆߎߣ߇వ᳿ߢ޽ࠆ‫ޕ‬ᚒ‫ޘ‬
ߪ⏛႐㈩ะ⹜ᢱࠍ↪޿ߚ NMR ᷹ቯࠍⴕ޿‫ޔ‬ฦේሶᩭࠨࠗ࠻ߩ㔚႐൨㈩‫ޔ‬ౝㇱ⏛႐╬ࠍ⷗Ⓧ߽ߞߚ‫⚿ߩࠄࠇߎޕ‬ᨐ߆ࠄ‫ޔ‬
᭴ㅧߩᱜᣇᩰሶ߆ࠄߩࠁ߇ߺ‫ޔ‬d 㔚ሶߩ゠㆏⁁ᘒ‫ޔ‬น⢻ߥ exchange path ╬ߦ㑐ߒߡ⼏⺰ߔࠆ‫ޕ‬
B16
SrCu2(BO3)2 ̤̫ͥͅ૧̱̞ࣞঽા௖
᧻ේ ା৻㧔᧲ᄢ‛ᕈ⎇㧕
ࡈ࡜ࠬ࠻࡟࡯࠻ߒߚ Shastry-Sutherland ᩰሶ
⋥੤ 2 ᰴర࠳ࠗࡑ࡯ࠬࡇࡦ♽ SrCu2(BO3)2 ߪ‫ޔ‬㘻๺⏛ൻߩ 1/8‫ޔ‬1/4‫ޔ‬
1/3 ߦ߅޿ߡ࠻࡝ࡊ࡟࠶࠻ߩዪ࿷ൻ
⚿᥏ൻࠍ઻߁⏛ൻࡊ࡜࠻࡯ࠍ␜ߔߎߣߢ⍮ࠄࠇߡ޿ࠆ‫ޕ‬1/8 ࡊ࡜࠻࡯⋧ߩ㜞⏛႐┵
⚂ 28 ࠹ࠬ࡜ߣ 1/4 ࡊ࡜࠻࡯ߩૐ⏛႐┵
⚂ 34 ࠹ࠬ࡜ߩ㑆ߢߪ⏛ൻ߇ㅪ⛯⊛ߦᄌൻߒߡ߅ࠅ‫ߩߎޔ‬㗔ၞߢߩࠬࡇࡦ᭴
ㅧ߇⏛႐ߣߣ߽ߦߤߩࠃ߁ߦᄌൻߔࠆ߆ߪᄢᄌ⥝๧޽ࠆ໧㗴ߢ޽ࠆ‫ᦨޕ‬ㄭᚒ‫ ߪޘ‬1/8 ࡊ࡜࠻࡯⋧ࠃࠅ㜞⏛႐ߩ 31 ࠹ࠬ࡜
߹ߢߩ⏛႐ߦ߅޿ߡࡎ࠙⚛ᩭߩ NMR ታ㛎ࠍⴕ޿‫⿥ߩ࠻࠶࡟ࡊ࡝࠻ޔ‬᭴ㅧ߇ߎߩਛ㑆⏛႐㗔ၞߢ߽ᱷߞߡ޿ࠆߎߣࠍ⷗
಴ߒߚ‫ޔߪߢ⴫⊒ᧄޕ‬NMR ࠬࡍࠢ࠻࡞ߩ⸃ᨆ⚿ᨐߦၮߠ߈‫ޔ‬SrCu2(BO3)2 ߩ᷷ᐲ⏛႐⋧࿑߿‫ࡦࡇࠬޔ‬᭴ㅧߦߟ޿ߡ⼏⺰
ߔࠆ‫ޕ‬
B17
ໝࣣΧσΟϋङ IPA-CuCl3 ͈ g ౵͈ 3 ষࡓ‫خ‬ণ‫௶ا‬೰
⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕
ᦨㄭߪᣢ⵾ຠߦࠃࠆ᷹ቯⵝ⟎ߩ⊒㆐ߦࠃࠅ‫ޔ‬ᭂ㒢ⅣႺࠍ㒰ߌ߫‫޿⧯ޔ‬ታ㛎ኅߪⵝ⟎㐿⊒ࠍߔࠆᯏળ߽‫ޔ‬േᯏ߽⒘⭯ߦ
ߥߞߡ޿ࠆߣᗵߓߡ޿߹ߔ‫⎇ߥ߁ࠃߩࠢ࡯ࡢࡦ࡯ࠖ࠹࡯࡞߽ߢ߹ߟ޿ߪߢࠇߘޕ‬ⓥߒ߆↢߹ࠇ߹ߖࠎ‫ޕ‬዁᧪‫ࠬࠢ࡯࡟ࡉޔ‬
࡞࡯⊛ߥ⎇ⓥࠍ߽ߚࠄߔ੐ࠍᦼᓙߒ‫⺧↳ᧄޔ‬⠪ߪ‫ᦨޔ‬ㄭ‫ޔ‬ESR ⵝ⟎ߦ೑↪ߢ߈ࠆ 2 ゲࠧ࠾ࠝࡔ࡯࠲ߩ㐿⊒ߦขࠅ߆߆ߞ
ߡ޿߹ߔ‫ߛ߹ޕ‬㆏ඨ߫ߢߔ߇‫ޔ‬ቶ᷷ߢߩ IPA-CuCl3 ߩ g ୯ⓨ㑆ಽᏓߩ᷹ቯ⚿ᨐࠍ⚫੺ߒ‫ߩߘޔ‬ᗧ⟵ࠍ⺑᣿ߒߚ޿ߣᕁߞ
ߡ޿߹ߔ‫ߩઁߡߒߘޕ‬ታ㛎ኅ߳ߩⵝ⟎㐿⊒ߩ㊀ⷐᕈ߽વ߃ߚ޿ߣᕁߞߡ޿߹ߔ‫ߩߘޕ‬ਛ߆ࠄ‫ࠇߕ޿ޔ‬ᭂ㒢ⅣႺߩࠃ߁ߦ‫ޔ‬
ߐࠄߦㅴൻߒߚ‛ℂߩࠬ࠹࡯ࠫ߇↢߹ࠇ‫ޔ‬ᣂߒ޿⎇ⓥ߇↢߹ࠇࠆߣᧄ↳⺧⠪ߪᦼᓙߒߡ޿߹ߔ‫ޕ‬
B18
ˍষࡓၾঊΑάϋࠏ͈ঽાಎ NMR ۱გၚ
⩲ ⺈৻㇢㧔㒋ᄢᎿ㧕
ࠡࡖ࠶ࡊࠍᜬߟ 1 ᰴర㊂ሶࠬࡇࡦ♽ߩ․ᓽߪ‫⏛ޔ‬႐ਛߢࠡࡖ࠶ࡊ߇㐽ߓߚ႐วߩ NMR ✭๺₸ 1/T1 ߩ᷷ᐲૐਅߦ઻߁
⊒ᢔߩ౹ߦ⃻ࠇࠆߎߣ߇ᜰ៰ߐࠇߡએ᧪‫ޔ‬᭽‫ߢ♽ߥޘ‬౹ߩ⏛႐ଐሽᕈࠍ⺞ߴࠆߚ߼ߩ⎇ⓥ߇ⴕࠊࠇߡ߈ߚ‫ޔߒ߆ߒޕ‬1/T1
ߩ᷷ᐲଐሽᕈߪ᷷ᐲߩ౹એᄖߩ࿃ሶߦ߽⃻ࠇࠆߚ߼‫ޔ‬ታ㛎⚿ᨐࠍ⸃ᨆߔࠆߚ߼ߦߪ 1/T1 ߩ⏛႐࡮᷷ᐲଐሽᕈߦ㑐ߔࠆ⹦
ߒ޿⸘▚⚿ᨐ߇ᔅⷐߣߥࠆ‫⎇ᧄޕ‬ⓥߢߪ 1 ᚑಽᦺ᳗࡮࡜࠶࠹ࠖࡦࠫࡖ࡯ᵹ૕ߦ߅ߌࠆ 1/T1 ߩ⏛႐࡮᷷ᐲଐሽᕈߩ࡙࠾
ࡃ࡯ࠨ࡞ߥᝄࠆ⥰޿ࠍ᳞߼‫ޔ‬᷷ᐲଐሽᕈ߇౹⊒ᢔߩ࿃ሶߦߩߺ⃻ࠇࠆ᧦ઙߥߤࠍᓧߚ‫⚿ޕ‬ᨐࠍࡂ࡞࠺࡯ࡦ♽‫ޔ‬S=1/2 ࠬ
ࡇࡦ࡜࠳࡯♽ߥߤߦㆡ↪ߒ‫ޔ‬ታ㛎ߣߩኻᔕࠍ⼏⺰ߔࠆ‫ޕ‬
71
໤଻ࡄ‫ݪ‬ਫ਼ౣ‫ݪࡄܢ‬ٛ!
! ! ૧̹̈́໤଻ࡄ‫ݪ‬ఘଷ͈ࢹಃ!
ᣣᤨ㧦 ᐕ ᦬㧣ᣣ
ᧁ㨪 ᦬㧤ᣣ
㊄
ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᧄ㙚⻠⟵ቶ
ឭ᩺ઍ⴫⠪ ૒⮮ ᱜବ㧔ฬᄢ࡮ℂ㧕
2006 ᐕ 6 ᦬ߦᒰᤨߩ‛ᕈᆔຬ㐳ߣߒߡ‫‛ޔ‬ᕈ⎇ⓥಽ㊁߇ᛴ߃ࠆ⻉໧㗴ࠍ⎇ⓥ⠪ࠦࡒࡘ࠾࠹ࠖ߇₸⋥ߦ⸛⺰ߔࠆ႐ࠍ૞
ࠆߚ߼ߦᮡ⸥⎇ⓥળࠍឭ᩺ߒ‫ޔ‬12 ᦬ 7㧙8 ᣣߦ㐿௅ߐߖߡ޿ߚߛ޿ߚ‫ޔߪߢߎߘޕ‬ᄢቇߩᴺੱൻ߿ቇⴚળ⼏ߩᡷ✬ߦࠃߞ
ߡ⎇ⓥⅣႺ߇ᄢ߈ߊᄌൻߔࠆਛ‫⃻ޔ‬႐ߩ‛ᕈ⎇ⓥ⠪߇Ṽὼߣᛴ޿ߡ޿ߚ ᩺੐㗄ࠍᢛℂߒ‫ޔ‬ᣂߚߥ⎇ⓥ૕೙ࠍ᭴▽ߔࠆߚ
߼ߩᗧ⷗੤឵߇ߥߐࠇߚ‫ޕ‬
ࡊࡠࠣ࡜ࡓߪ‫
ޔ‬1౒ห೑↪⎇ⓥᚲߩᓎഀ࡮዁᧪௝ߦ㑐ߔࠆౝㇱ‫ޔ‬ᄖㇱ෺ᣇߩᗧ⷗੤឵‫ޔ‬㧔2㧕‛ᕈ⎇ⓥߩߚ߼ߩㆡᱜߥ
⾗㊄㈩ಽ‫ޔ‬㧔3㧕ᣂ↢ቇⴚળ⼏ߩᣇะ࡮ᯏ⢻ߣߘࠇߣߩ౏ᑼߥߟߥ߇ࠅ߇ߥߊߥߞߚ‛ᕈᆔຬળߩᓎഀ‫
ޔ‬4㧕ߘߩઁߩ⺖
㗴‫ߦޔ‬ᄢ೎ߐࠇࠆ‫⺰⸛ߩߡ޿ߟߦࠄࠇߘޕ‬ౝኈࠍ᭎ⷰߒߡ⎇ⓥળႎ๔ߣߒ‫ߪߊߒ⹦ޔ‬ฦ⹤㗴ឭଏ⠪ߩⷐᣦࠍߏࠄࠎ޿ߚߛ
ߊࠃ߁߅㗿޿ߔࠆ‫ޕ‬
߹ߕ‫᧲ޔ‬ᄢ‛ᕈ⎇ⓥᚲߩᚲ㐳߆ࠄ‫‛ߩߢ߹ࠇߎޔ‬ᕈ⎇ߩᱠߺߣ⃻࿷ߩⅣႺ᧦ઙߦߟ޿ߡߩ⹤߇޽ࠅ‫ߩߘޔ‬዁᧪௝ߦߟ޿
ߡߪ‫ޔ‬ታ㛎࡮ℂ⺰ߩᓧᗧಽ㊁ߩࠣ࡞࡯ࡊߩ⢒ᚑ‫ߪߦࠄߐޔ‬࿖㓙⊛౒ห೑↪⎇߳ߩᡷ㕟߇⻭ࠊࠇߚ‫ޕ‬ᩑፒᚲຬߪ‫ߎߎޔ‬㧡ᐕ
ߢߪ౒ห೑↪ੱᢙߪჇട௑ะߦ޽ࠅ‫ޔ‬ᨰ⒖ォ߿ᴺੱൻߦࠃߞߡᄌࠊߞߚߎߣ߽ߥ޿ߎߣࠍႎ๔ߒߚ‫⁁ߥ߁ࠃߩߎޕ‬ᴫߪ‫ޔ‬
౒ห೑↪⎇߇৻ᄢቇߩઃ⟎⎇ⓥᚲߣߒߡ⷗ㆊߏߐࠇߡߪߥࠄߥ޿ߎߣࠍ␜ߒߡ޿ࠆ‫ޕ‬ਛᕈሶᣉ⸳ߩ౒ห೑↪ߩ⃻⁁ࠍ⺑᣿
ߒߚᑝ↰᳁ߪ‫ޔ‬ේሶജᯏ᭴ߩᣉ⸳ߢ޽ࠆ J-PARC ߳⽸₂ߔࠆߣߣ߽ߦቯᏱἹߦ㊀߈ࠍ߅߈‫ޔ‬ਛᕈሶಽ㊁ߩ⧯ᚻ⢒ᚑᣇ╷
ߩᎿᄦࠍⴕ߁ߎߣࠍㅀߴߚ‫৻ޕ‬ᣇ‫ޔ‬੩ᄢၮ⎇ߩᴪ㕟߿዁᧪ߦߟ޿ߡㅀߴߚᣧᎹ᳁ߪ‫ޔ‬ṛ࿷ဳߩ࿖㓙⎇ⓥળ᭴ᗐࠍਛᔃߦㅀ
ߴߥ߇ࠄ‫ߦ߼ߚߩߘޔ‬స᦯ߔߴ߈໧㗴ὐࠍᢛℂߒߚ‫ޕ‬
⩲᳁ߪ‫ޔ‬᡼኿శߩ೑↪ࠍⴕ߁┙႐߆ࠄ‫ޔ‬ၮ␆⎇ⓥಽ㊁߆ࠄߩᣉ⸳೑↪ߩ໧㗴ὐࠍᜰ៰ߒߚ‫↪૶ޕ‬ᢱ㊄߇৻⥸⺖㗴೑↪⠪
ߦߪ㜞ߔ߉ࠆߎߣ߽ᄢ߈ߥ໧㗴ߢ޽ࠆ‫ޕ‬㜞⇗᳁‫ޔ‬ᓟ⮮᳁ߪ‛ᕈ⎇߳ߩᦼᓙࠍߎ߼ߡ੹ᓟߩ⊒ᅗࠍଦߒ‫✚ޔ‬࿖ಽኹߣߒߡߩ
ᓎഀߩ⛽ᜬ‫ߦࠄߐޔ‬೑↪ߒ߿ߔ޿౒ห೑↪૕೙ࠍ஻߃ࠆߎߣࠍⷐᦸߒߚ‫ޕ‬
‛ᕈ⎇ⓥߩߚ߼ߩ⾗㊄ߩㆡᱜ㈩ಽߩⷰὐ߆ࠄ‫ޔ‬ኅ᳁ߪၮ⋚⊛ᩞ⾌ߣ┹੎⊛⾗㊄ߩ෺ᣇߩ㊀ⷐᕈ߇ࠕࡇ࡯࡞ߐࠇߥ߇ࠄ߽‫ޔ‬
㊄ߦ߹ߟࠊࠆਇ␽੐╬ߩᓇ㗀ߢ⎇ⓥ⾌⛽ᜬߩߚ߼ߩ㒐ᚢߦ࿁ࠄߑࠆࠍᓧߥ߆ߞߚߎߣࠍㅀߴߡ޿ࠆ‫ޕ‬᳁߇⸒߁ࠃ߁ߦ‛ᕈ
ಽ㊁ߢߪ⦟޿⧘ࠍ⢒ߡࠆ᳓᠋߈㧔߫ࠄ᠋߈ߦߪ޽ߚࠄߥ޿㧕߇ᔅⷐߥߩߦ᜔߽ࠊࠄߕߢ޽ࠆ‫‛ޔߦࠄߐޕ‬ᕈ⎇ⓥ᜚ὐᢛ஻
⸘↹ߪ‫ޔ‬
㧔ߣߊߦ⍫ࠤፒ᳁߇ᒝ⺞ߒߡ޿ࠆࠃ߁ߦ㧕ዊⷙᮨ⎇ⓥࠣ࡞࡯ࡊߩ⴮߃߇໧㗴ߥ੹‫ޔ‬ᣂߚߥ㊀ⷐⷞὐߦߥࠅߟߟ޽
ࠆߎߣࠍᜰ៰ߒߚ‫ޕ‬⍫ࠤፒ᳁ߪ‫⎇ߦࠄߐޔ‬ⓥ⾗㊄ߩ㈩ಽᴺߩ໧㗴ὐ߇ᢎ⢒ో૕ߦᷓೞߥᖡᓇ㗀ࠍ߽ߚࠄߔߎߣߦ߽ ᔨࠍ
␜ߒߚ‫ޕ‬ᐔፉ᳁ߪ‫ޔ‬PD ࠍขࠅᏎߊⅣႺߦ㑐ߔࠆࠕࡦࠤ࡯࠻⚿ᨐࠍ߽ߣߦ‫ߩߘޔ‬໧㗴ὐߩ⹺⼂ࠍ౒ㅢߩ߽ߩߦߒߚ‫ޕ‬
ᣂ↢ቇⴚળ⼏߇ᡷ✬ߐࠇ‫‛ޔ‬ᕈᆔຬળߣߩ㑐ଥ߽ߥߊߥߞߚߎߣߪ਄⸥ߩߣ߅ࠅߢ޽ࠆ߇‫ߩߘޔ‬ቇⴚળ⼏ߩᓎഀߣᯏ⢻
ߦߟ޿ߡචୖ᳁߇⹤ߐࠇߚ‫‛ޕ‬ᕈ⎇ⓥ᜚ὐᢛ஻⸘↹ߦߟ޿ߡ‫ޔ‬⒳‫ߩޘ‬໧޿߆ߌ߇޽ߞߚࠃ߁ߦ੹ᓟ߽㕖౏ᑼ࿅૕ߣߒߡߩ
‛ᕈᆔຬળߦኻߒߡ‫⃻ޔ‬႐ߩჿࠍ⡞޿ߡ޿ߚߛ߈‫ߩߎޕ޿ߚߺᦸ߁ࠃࠆߚ޽ߦߣߎޔ‬ὐߢߪ‫‛ޔ‬ᕈᆔຬળߣߒߡ߽ᄙߊߩ
ࠦࡒࡘ࠾࠹ࠖࡔࡦࡃ࡯ߩᗧ⷗ࠍ෻ᤋߒߚቴⷰ⊛ߥᗧ⷗ࠍឭ಴ߢ߈ࠆ૕೙ࠍᏱᤨᢛ߃ߡ߅ߊߎߣ߇㊀ⷐߢ޽ࠆ‫⑺ޕ‬శ᳁߽‫ޔ‬
ቇⴚળ⼏ߩᓎഀ߅ࠃ߮‛ᕈᆔຬળߣߩߟߥ߇ࠅߦߟ޿ߡ㊀ⷐᕈࠍᒝ⺞ߒߚ‫ޕ‬૒⮮ߪ‫‛ߥ߁ࠃߩߎޔ‬ᕈᆔຬળࠍߣࠅ߹ߊⅣ
Ⴚߩᄌൻࠍ⠨ᘦߒߡ‫‛ޔ‬ᕈᆔຬળߦⷙ⚂ࠍ೙ቯߒᣂߚߥ⚵❱ߣߒߚߎߣ‫ߪߦࠄߐޔ‬ᨐߚߔߴ߈ᓎഀߦߟ޿ߡߩ⠨߃ࠍ᣿ࠄ
߆ߦߒߚ‫‛⃻ޕ‬ᕈᆔຬ㐳ߢ޽ࠆୖᧄ᳁ߪߐࠄߦ‫ޔ‬ᴺੱൻߦ઻ߞߡ⃻ࠇߚᄢቇ㑆ߩ೑⋉⋧෻‫ޔ‬ᩰᏅ᜛ᄢ╬ߩ໧㗴ߦߤ߁┙ߜ
ะ߆߁߆߇໧ࠊࠇߡ޿ࠆߎߣࠍㅀߴߚ‫ޕ‬
ᰴᦼ‛ℂቇળળ㐳ߢ߽޽ࠆ㣮ఽፉ᳁ߪ‫ޔ‬ᤐߣ⑺ߩ‛ℂቇળߩᡷ㕟ߦߟ޿ߡࠕࡦࠤ࡯࠻⚿ᨐࠍ߽ߣߦ⼏⺰ߒߚ‫ޔߒ߆ߒޕ‬
⃻ᤨὐߢߘߩ㐿௅ᣇᴺߦᄢ߈ߥᄌൻ߇ߤ߁ߒߡ߽ᔅⷐߢ޽ࠆߣߩᗵ⸅ߪᒝߊߥ߆ߞߚࠃ߁ߦᗵߓࠆ‫ޕ‬
JPSJ ߩ⃻⁁ߣ໧㗴ὐߦߟ޿ߡߪ‫ޔ‬ᣁᵄ✬㓸ᆔຬ㐳߆ࠄߩႎ๔߇޽ߞߚ‫ޕ‬⒳‫ߩޘ‬ദജߦࠃࠅᄢ߈ߥᡷༀ߇޽ߞߚߎߣߪ
⊝߇⹺߼ࠆߣߎࠈߢ޽ࠆ߇‫ޔ‬ᛩⓂᢙ߇િ߮ᖠ߻⃻⁁ߦߟ޿ߡߪ‫੹ޔ‬ᓟ߽৻Ბߩᗧ⼂ᡷ㕟߇ᦸ߹ࠇࠆ‫ޕ‬
ᦨᓟߦ⧐⾐᳁ߣ྾┑᳁ࠃࠅᄢᵞ࠮ࡦ࠲࡯ߩ⃻⁁ߦߟ޿ߡߩႎ๔߇޽ࠅ‫ߩࠄ߆ࠖ࠹࠾ࡘࡒࠦޔ‬ᡰេ߇㊀ⷐߢ޽ࠆߎߣ߇ᒝ
⺞ߐࠇߚ‫ޕ‬
એ਄ߩࠃ߁ߦ‫߽ࠇߕ޿ޔ‬හ᳿ߩ࿎㔍ߥ⺖㗴߇⹦ߒߊႎ๔ߐࠇ‫⌀ޔ‬೶ߦ⸛⺰ߐࠇߚ‫⺖ߩࠄࠇߘޔߦ৻╙ޕ‬㗴߇㓸߹ߞߚᄙ
ߊߩࠠ࡯ࡄ࡯ࠬࡦߩ౒ㅢ⹺⼂ߦߥߞߚߎߣࠍᄢ߈ߥᚑᨐߣ⠨߃ߡ޿ࠆ‫ޔߚ߹ޕ‬಴᧪ࠇ߫ߎࠇࠄߩ⼏⺰ࠍ߹ߣ߼޽ߍ‫੹ޔ‬ᓟ
ߩᣇ╷ࠍዉߊ࿯บߣߒߡߩᓎഀࠍᨐߚߐߖߚ޿ߣ⠨߃ߡ޿ࠆ‫ޕ‬
72
ࡊ ࡠ ࠣ ࡜ ࡓ
23 ࠮˓඾)࿐*!
㧝㧚
౒ห೑↪⎇ⓥᚲߦߟ޿ߡ
‛ᕈ⎇ߩ⃻⁁ߣ዁᧪௝㧦
਄↰ ๺ᄦ㧔‛ᕈ⎇ᚲ㐳㧕
10:00-10:30
ၮ␆‛ℂቇ⎇ⓥᚲߩ⃻⁁ߣ໧㗴ὐ㧦
ᣧᎹ ዏ↵㧔੩ᄢၮ⎇㧕
10:30-10:50
‛ᕈ⎇౒ห೑↪㧔⒖ォߣᴺੱൻᓟ㧕
㧦
ᩑፒ ᣿ੱ㧔‛ᕈ⎇㧕
10:50-11:05
ᄢဳ⸳஻ߩ౒ห೑↪㧔ਛᕈሶታ㛎㧕
ᑝ↰ ๺㚍㧔‛ᕈ⎇㧕
11:05-11:20
⸛ ⺰ 11:20-12:20
ᄖㇱ߆ࠄ
Spring-8㧦
⩲
ṑᱜ㧔㒋ᄢၮ␆Ꮏ㧕
ᄖ஥߆ࠄߩᗧ⷗࡮ⷐᦸ㧦
㜞⇗ ᢅ㇢㧔ᐢᄢ㧕
13:45-14:00
ᓟ⮮ ノቁ㧔ᣂẟᄢ㧕
14:00-14:15
⸛ ⺰ 13:30-13:45
14:15-15:15
㧞㧚㧔‛ᕈ⎇ⓥߩߚ߼ߩ⾗㊄‫ઁߩߘޔ‬㧕
COE ߘߩઁߩᄢဳ⾗㊄ᤨઍߣ‛ᕈ⎇ⓥ⾗㊄㧦
ኅ
ᵏᒄ㧔‛ᕈ⎇㧕
ዊⷙᮨ⎇ⓥቶߦ߅ߌࠆ⎇ⓥߣᄙ᭽ᕈߩ⏕଻㧦
⍫ࠤፒ స㚍㧔℄⃿ᄢ㧕
16:05-16:25
PD ໧㗴ߩ⃻⁁㧦ࠕࡦࠤ࡯࠻⚿ᨐߩႎ๔㧦
ᐔፉ
16:25-16:45
ᄢ㧔ฬᄢ㧕
⸛ ⺰
15:45-16:05
16:45-17:45
㧔ᙣ ⷫ ળ㧕
23 ࠮ 9 ඾)߄*!
㧟㧚㧔ᣂ↢ቇⴚળ⼏㧕
ᯏ⢻ߣᓎഀ‫‛ޔ‬ᕈࠦࡒࡘ࠾࠹ࠖߦᦸ߻ߎߣ㧦
චୖ ᅢ♿㧔᧲ᄢ㧕
9:00-9:30
ർේ ๺ᄦ㧔ICU㧕
9:30-9:50 ᰳᏨ
ቇⴚળ⼏ߣ‛ᕈࠦࡒࡘ࠾࠹ࠖ෺ᣇ߆ࠄ㧦
⑺శ
⚐㧔㕍ቇᄢ㧕
9:50-10:10
⸛ ⺰
10:10-11:20
㧠㧚‛ᕈࠦࡒࡘ࠾࠹ࠖߣߒߡߩ‛ᕈᆔຬળߩᓎഀ㧦 ૒⮮ ᱜବ㧔ฬᄢ㧕
12:50-13:05
ୖᧄ ⟵ᄦ㧔᧲ർᄢ㧕
⸛ ⺰
13:05-13:20
13:20-13:50
㧡㧚ᤐ‫‛⑺ޔ‬ℂቇળ㧙‛ᕈ㗔ၞ⊒⴫ߦ㑐ߔࠆᡷ㕟㧦 㣮ఽፉ ⺈৻㧔᧲ᄢ
14:10-14:35
⸛ ⺰
14:35-15:05
JPSJ ߦߟ޿ߡ㧦 ᣁᵄ ᒄⴕ㧔JPSJ ✬㓸ᆔຬ㐳㧕
⸛ ⺰ 15:05-15:25
15:25-15:55
㧢㧚ᄢᵞᣉ⸳ߣ⿥࠙࡜ࡦൻว‛⎇ⓥ! !
㧣㧚ߘߩઁ! ⧐⾐ ⧐▸㧔ේሶജᯏ᭴㧕 16:10-16:25
྾┑ ᮸↵㧔㊄⎇㧕 16:25-16:40
16:40-17:00
73
໤଻ࡄ͈࡛ે͂੿ြ௨!
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ㐳 ਄↰ ๺ᄦ
‛ᕈ⎇ߪ᧪ᐕഃ┙ 50 ๟ᐕࠍㄫ߃ࠆ‫ޕ‬ඨ਎♿ߩᱠߺࠍᝄࠅ㄰ࠅ‫ߩߘޔ‬዁᧪ࠍ⠨߃ࠆࠃߔ߇ߣߒߚ޿‫ޕ‬
‛ᕈ⎇ⓥᚲߪ‫‛ޟޔ‬ᕈ‛ℂቇߩ✚ว⊛߆ߟ♽⛔⊛ߥ⎇ⓥࠍⴕ޿‫߇ࠊߡߞࠃߦࠇߘޔ‬࿖ߩቇ໧ߩ᳓Ḱࠍ㜞߼Ꮏᬺᛛⴚߩ⊒
ዷߦ⽸₂ߔࠆ‫ోࠆߔߣ⊛⋡ࠍߣߎޠ‬࿖౒ห೑↪⎇ߣߒߡ‫ޔ‬1957 ᐕ 3 ᦬ 31 ᣣ᧲੩ᄢቇߦ⸳⟎ߐࠇߚ‫ ߪ┙⸳ߩߘޕ‬1956 ᐕ
4 ᦬ߦ಴ߐࠇߚᣣᧄቇⴚળ⼏ߩ൘๔ߦ߽ߣߠ޿ߡ޿ࠆ‫ޕ‬൘๔ߦࠃࠇ߫‫‛ޔ‬ᕈ⎇ⓥᚲߪ‫‛ޟ‬ᕈ‛ℂቇߩ߁ߜ‫ޔ‬࿕૕‛ℂቇࠍ
ਛᔃߣߔࠆಽ㊁ߦ߅޿ߡߘߩၮ␆⊛⎇ⓥࠍ㜞ᐲߩ✚วᕈࠍ߽ߞߡⴕ߁ߦ⿷ࠆචಽߥㄭઍ⊛⸳஻ࠍᢛ߃ߚਛᄩ⊛⎇ⓥᯏ㑐ߢ
޽ࠆߎߣ߇ᦸ߹ࠇࠆ‫‛ߡ޿߅ߦߎߎޕ‬ᕈߩ⎇ⓥࠍᒝജߦផㅴߔࠆߣߣ߽ߦ‫ోޔ‬࿖ߩ⎇ⓥ⠪߇ߘߩ⸳஻ࠍ೑↪ߒߡߘߩ⎇ⓥ
ࠍᔀᐩ⊛ߦㆀⴕߔࠆߎߣࠍⓍᭂ⊛ߦេഥ‫ ࠄ߆┙⸳ޕࠆ޿ߡߞ⻭ࠍߣߎࠆ޽ߢ߈ߴߔޠ‬6 ᐕࠍ߆ߌߡቴຬ 1 ㇱ㐷ࠍ฽߻ 22
ㇱ㐷߇ᢛ஻ߐࠇ‫゠ޔ‬㆏᡼኿‛ᕈ⎇ⓥᣉ⸳߇㒝⟎ߐࠇߚ‫ߩߎޕ‬ᑪ⸳ᦼ߆ࠄߘࠇࠍ↪޿ߚ⎇ⓥ߇ㆀⴕߐࠇߚᦼ㑆ࠍ‛ᕈ⎇ߩ╙
৻਎ઍߣ๭ࠎߢ޿ࠆ‫ޕ‬
1980 ᐕߦߪ⎇ⓥᚲߩో㕙⊛ߥᡷ⚵߇ⴕࠊࠇ‫ߩߢ߹ࠇߘޔ‬ዊㇱ㐷೙ࠍᡷ߼ᄢㇱ㐷೙ࠍߣߞߡ⎇ⓥࠍㅴ߼ࠆ૕೙߇ᢛ஻ߐ
ࠇߚ‫ ߩࠄ߆ࠇߘޕ‬15 ᐕ㑆ߪ‛ᕈ⎇ߩ╙ੑ਎ઍߣ๭߫ࠇࠆ߇‫⿥ޔߪߢߎߘޔ‬ᒝ⏛႐‫ޔ‬ᭂ㒢࡟࡯ࠩ࡯‫⴫ޔ‬㕙‛ᕈ‫⿥ޔ‬ૐ᷷‫ޔ‬
⿥㜞࿶ߥߤ⎇ⓥࠍᡰ߃ࠆᛛⴚ㐿⊒ߩ㊀ⷐᕈ߇ᒝ⺞ߐࠇߚ‫ޕ‬1995 ᐕߦߪᄖㇱ⹏ଔ߇ታᣉߐࠇ‫ޔ‬ᨰ⒖ォࠍⷞ㊁ߦ౉ࠇߚᡷ⚵
߇ታᣉߐࠇߚ‫ޕ‬ᣂ‛⾰⑼ቇ‫‛ޔ‬ᕈℂ⺰‫ޔ‬వ┵㗔ၞ‫ޔ‬ᭂ㒢ⅣႺ‛ᕈ‫ޔ‬వ┵ಽశ߆ࠄߥࠆ 5 ᄢ⎇ⓥㇱ㐷ߣ゠㆏᡼኿‫ޔ‬ਛᕈሶ
ᢔੂߦട߃‫ޔ‬ᣂߚߦዉ౉ߐࠇߚࠬ࡯ࡄ࡯ࠦࡦࡇࡘ࡯࠲ࠍᠩߔࠆ‛⾰⸳⸘⹏ଔᣉ⸳߇ടࠊࠅ‫ޔ‬3 ᣉ⸳߆ࠄߥࠆ૕೙߇ᢛ஻ߐ
ࠇߚ‫ޕ‬ᨰࠠࡖࡦࡄࠬߩᑪ⸳߇ᆎ߹ߞߚ 1996 ᐕ߆ࠄ⃻࿷߹ߢࠍ╙ਃ਎ઍߣ๭ࠎߢ޿ࠆ‫ޕ‬
2000 ᐕߦቢੌߒߚᨰ⒖ォએ㒠 2004 ᐕߦߪ࿖┙ᄢቇߩᴺੱൻ߇ታᣉߐࠇߚ‫ޕ‬ᴺੱൻߩ߽ߣߢߪ✚㐳ߩࠗ࠾ࠪࠕ࠴ࡉ߇
ᒝൻߐࠇࠆ৻ᣇ‫ޔ‬ᄢቇ㒝⟎⎇ߦ߅ߌࠆో࿖౒ห೑↪ߩ૏⟎ઃߌ߇᣿⍎ߢߥߊߥࠅ‫❗▚੍ߚ߹ޔ‬ᷫߩ࿶ജߩ߽ߣߢ‛ᕈ⎇ߪ
዁᧪௝ࠍᮨ⚝ߒߡ޿ࠆ‫ޕ‬
‛ᕈ⎇ߩ⚵❱ේℂߣߒߡ‫
ޔ‬1‛ᕈ‛ℂቇߩၮ␆ࠍᚑߔታ㛎࡮ℂ⺰ߢ਎⇇࠻࠶ࡊ࡟ࡌ࡞ߩࠣ࡞࡯ࡊࠍ⛽ᜬߔࠆ‫
ޕ‬2ᓧ
ᗧಽ㊁߿㊀ὐ⊛ߦዷ㐿ߔࠆಽ㊁ࠍ⢒ᚑߔࠆ‫
ޕ‬3ᄢⷙᮨ‛ᕈ⑼ቇߪᣉ⸳ߣߒߡ⎇ⓥࠍផㅴߔࠆ‫(ޕ‬4)‛⾰⑼ቇߩዷ㐿ߦᔅ㗇
ߩൻቇࠣ࡞࡯ࡊߩ㊀ⷐᕈ‫ࠍޔ‬᜼ߍࠆߎߣ߇ߢ߈ࠆ‫ߦࠇߎޕ‬ኻᔕߒߡ‫ޔ‬዁᧪⸘↹ߩ⠨߃ᣇߣߒߡߪ‫‛ޔ‬ᕈ⑼ቇ⎇ⓥߩၮ␆⊛
૕ജߣ߽⸒߁ߴ߈ታ㛎࡮ℂ⺰ߩਔベࠍᢛ஻ߒߟߟᓧᗧಽ㊁ߩࠣ࡞࡯ࡊ‫⸳ޔ‬஻ࠍ⢒ᚑᒝൻߒ‫ోࠍࠇߘޔ‬࿖౒ห೑↪ߦଏߔࠆ
ߎߣߦߥࠆ‫ߚߒ߁ߎޕ‬ᵴേࠍ┹੎⊛⾗㊄ࠍᵴ↪ߒߥ߇ࠄዷ㐿ߒ‫ోޔ‬࿖౒ห೑↪⎇߆ࠄ࿖㓙౒ห೑↪⎇ߦ⣕⊹ߔࠆߎߣࠍ⋡
ᜰߔߎߣ߇⋡ᮡߢ޽ࠆ‫ޕ‬
ᤓᐕᐲታᣉߒߚ࿖㓙⊛ᄖㇱ⹏ଔߩ╵↳ࠍၮ␆ߦ‫ ╙ޔ‬2 ᦼߩਛᦼ⋡ᮡ࡮ਛᦼ⸘↹ߩ⼏⺰ࠍߦࠄࠎߢ‫ ࠄ߆ࠇߎޔ‬1‫ޔ‬2 ᐕ߆
ߌߡ዁᧪⸘↹ࠍ╷ቯߔࠆߎߣߦߥࠆ‫⊝ߩ࡯ࠖ࠹࠾ࡘࡒࠦޕ‬᭽ߩߏ㖊ᠤ‫ߏޔ‬දജࠍಾߦ߅㗿޿ߔࠆ‫ޕ‬
‫ܖ‬ய໤ၑ‫ݪࡄڠ‬ਫ਼͈࡛ે͂࿚ఴത!
੩ㇺᄢቇၮ␆‛ℂቇ⎇ⓥᚲ ᣧᎹ ዏ↵
ၮ␆‛ℂቇ⎇ⓥᚲߪ 1953 ᐕߦో࿖ೋߩ౒ห೑↪⎇ⓥᚲߣߒߡ⊒⿷ߒ‫ోޔ‬࿖ߦవ㚟ߌߡᚲຬߩછᦼ೙ࠍዉ౉ߒ‫ޔ‬વ⛔⊛
ߥಽ㊁ߩℂ⺰‛ℂߩ⎇ⓥߪ߽ߣࠃࠅᄤ૕ᩭ‛ℂ߿↢‛‛ℂ╬ߩᣂߒ޿ಽ㊁ߩഃᚑ╬ߦ߽ᄢ߈ߥᓎഀࠍᨐߚߒߡ߈ߚ‫ޕ‬
1990 ᐕߦߪᐢፉᄢቇℂ⺰‛ℂቇ⎇ⓥᚲߣว૬ߒߚߩࠍᦼߦ⧷⺆ฬ⒓ࠍ Yukawa Institute for Theoretical Physics ߣߒ‫ޔ‬
਎⇇ਛ߆ࠄ‛ℂቇోಽ㊁ࠍ✂⟜ߔࠆℂ⺰⎇ⓥߩ᜚ὐߢ޽ࠆߣหᤨߦᄙߊߩౝᄖߩ⎇ⓥ㓸ળࠍ㐿ߊ႐ߣߒߡ⹺⍮ߐࠇߡ޿ࠆ‫ޕ‬
ߘߩ৻ᣇߢ 2002 ᐕߦߪዊⷙᮨ⎇ⓥᚲߣߒߡઁ⎇ⓥᯏ㑐ߣߩว૬ࠍଦߐࠇߚࠅ‫ޔ‬COE ࡊࡠࠣ࡜ࡓ߇ฦᄢቇߢ⿛ࠆਛߢᄙ
ߊߩ࿖㓙ળ⼏߇ੂ┙ߒ‫‛ߦᦝޔ‬ᕈ⎇߿㜞ࠛࡀ࡞ࠡ࡯⎇‫ޔ‬ቝቮ⎇╬ߩᄙߊߩኾ㐷ኅࠍ㓸߼ߚᄢⷙᮨ⎇ⓥᚲ߇ሽ࿷ߔࠆਛߢߘ
ߩሽ࿷ᗧ⟵߇໧ࠊࠇࠆࠃ߁ߦߥߞߡ߈ߚ‫ޕ‬
ߘ߁ߒߚേ߈ࠍฃߌߡ 5 ᐕ⒟ᐲ߅߈ߦ⥄Ꮖ⹏ଔ‫ޔ‬ᄖㇱ⹏ଔࠍฃߌߡߘߩ൘๔ߦᓥ޿ᓢ‫ߦޘ‬ၮ␆‛ℂቇ⎇ⓥᚲ߽ߘߩ․
ᓽࠍᄌ߃ߟߟ޽ࠆ‫੹ޕ‬࿁ߩ⻠Ṷߢߪ 2005 ᐕ 11 ᦬ߦⴕࠊࠇߚᄖㇱ⹏ଔߩ᭎ⷐߣឭ⸒‫ߦࠇߘޔ‬ኻߔࠆၮ⎇ߩኻ╷ࠍ⚫੺ߔ
ࠆ‫ޕ‬ᄖㇱ⹏ଔᦠߩឭ⸒ߢ߽ᒝߊ൘߼ࠄࠇߚߎߣߪߘߩ႐ߢ౒ห⎇ⓥ߽น⢻ߦߥࠆṛ࿷ဳ࿖㓙⎇ⓥ㓸ળࠍ⃻ⴕߩᐕ㧝࿁߆ࠄ
ᐕ 3 ࿁ߦߔࠆߎߣߢ޽ࠆ‫ߩࡈ࠶࠲ࠬ࠻࡯ࡐࠨߣ▚੍ߩߡ޿ߟߦࠇߎޕ‬₪ᓧߩߚ߼ߦ‫⑼ࡦࡠ࠼ࡂ࡮ࠢ࡯ࠜࠢޟ‬ቇߩℂ⺰⎇
ⓥߩᣂߚߥዷ㐿ࠍ⋡ᜰߔ࿖㓙౒ห⎇ⓥࡊࡠࠣ࡜ࡓ‫ࠍޠ‬ឭ಴ߒߡ߅ࠅ‫⃻ޔ‬࿷⽷ോ⋭ߢክ⼏ਛߢ޽ࠆ‫⎇ߩߎޕ‬ⓥ⸘↹߇ណᛯߐ
ࠇߚᥙߦߪᐕ 3 ࿁ߩṛ࿷ဳ⎇ⓥળߩታᣉ߇น⢻ߦߥࠆߛߌߢߥߊ‫‛ࡦࡠ࠼ࡂߡߒߣࡈ࠶࠲ࠬ࠻࡯ࡐࠨޔ‬ℂߩᢎ᝼╬߇Ⴧ
ຬߢ߈ࠆน⢻ᕈ߇޽ࠆ‫⸘⛔ޔઁߩߘޕ‬േജቇಽ㊁ߩᕡਭൻ߿ࡊࡠࠫࠚࠢ࠻ࡑࡀ࡯ࠫࡖ࡯߿⎇ⓥഥᚻ౏൐ߩ⹤㗴ࠍ⚫੺ߔࠆ‫ޕ‬
74
ߘߩ৻ᣇߢ౨㗡ߦㅀߴߚ᭽ߦᄙߊߩ໧㗴߇ၮ␆‛ℂቇ⎇ⓥᚲࠍขࠅᏎ޿ߡ޿ࠆ‫⻠ᧄޕ‬Ṷߢߪ․ߦ㧔ᄖㇱ⹏ଔߢ߽໧㗴ߦ
ߥߞߚ㧕‛ᕈಽ㊁ߩㆇ༡૕೙ߩ໧㗴ὐ߿‫ޔ‬ᣂಽ㊁ࠍߤߩࠃ߁ߦ⋓ࠅ┙ߡߡ޿ߊߴ߈ߥߩ߆ߦߟ޿ߡ໧㗴ឭ⿠ࠍⴕ߁‫ߚ߹ޕ‬
છᦼ೙ߦ઻߁໧㗴߿ᑪ‛ߩᡷୃ໧㗴‫߽ߘ߽ߘޔ‬㐳ᦼṛ࿷ဳ⎇ⓥળߦ⺕߇ෳടߒ‫߁޿ߣ߆ߩࠆߔࠍ࠻࡯ࡐࠨ߇⺕ޔ‬໧㗴ߦߟ
޿ߡ߽⼏⺰ߔࠆ‫ޔߚ߹ޕ‬ၮ␆‛ℂቇ⎇ⓥᚲ߇⎇ⓥߩ႐ࠍឭଏߔࠆߛߌߢߥߊ‫ޔ‬ᅤ૗ߦᚲຬ߇⎇ⓥᚑᨐࠍ᜼ߍߡ޿ߊߩ߆ߦ
ߟ޿ߡ߽⸅ࠇߡ޿ߊ‫ޕ‬
໤଻ࡄ‫ݪ‬ਫ਼͈‫ވ‬൳၌ဥ!
Ƚ!֊ഢ༹͂૽‫!ࢃا‬Ƚ !
‛ᕈ⎇ⓥᚲ
ᩑፒ ᣿ੱ
‛ᕈ⎇ⓥᚲߪ‫⑼⾰‛ޔ‬ቇ⎇ⓥߩߚ߼ߩᄢဳ⎇ⓥ⸳஻߿․ᓽ޽ࠆታ㛎ⵝ⟎ࠍ⸳⟎ߒߡవ┵⊛‛ᕈ⎇ⓥࠍⴕ߁ߣ౒ߦ‫⎇ޔ‬ⓥ
⸳஻ࠍో࿖ߩ‛ᕈ⎇ⓥ⠪ߩ౒ห೑↪ߦଏߒߡ‫‛ޔ‬ᕈ⎇ⓥߩ᜚ὐߣߒߡߩᓎഀࠍߪߚߒߡ߈ߡ޿ࠆ‫‛ޕ‬ᕈ⎇ߩ౒ห೑↪ߦߪ‫ޔ‬
ታ㛎⸳஻ߩ೑↪ࠍਛᔃߣߔࠆᣉ⸳೑↪ߣᚲᄖ⎇ⓥ⠪ߣߩ౒ห⎇ⓥ߿⎇ⓥળ㐿௅ߦࠃࠆᖱႎ੤឵ࠍផㅴߐߖࠆߣ޿߁ 2 ߟ
ߩ஥㕙߇޽ࠅ‫ߩߎޔ‬ේೣߪ 50 ᐕ೨ߩ⎇ⓥᚲߩ⸳┙ᒰೋ߆ࠄᄌࠊߞߡ޿ߥ޿‫ޕ‬
ᨰ⒖ォࠍᯏߦ‫‛ޔ‬ᕈ⎇ߪ⎇ⓥ⚵❱ࠍᡷ⚵ߔࠆߣ౒ߦ‫ޔ‬ᓥ᧪ߩฃߌり⊛ߥᣉ⸳೑↪ߩᡷༀ‫ޔ‬⢻േ⊛ߥ౒ห⎇ⓥߩផㅴࠍ⋡ᜰ
ߒߡ߈ߚ‫⃻ޕ‬࿷‫‛ޔ‬ᕈ⎇ߪ 5 ㇱ㐷‫ޔ‬4 ᣉ⸳߆ࠄᚑࠅ‫౒ޔ‬ห೑↪⠪ᢙߪ‫ޔࡦࠦࡄࠬޔ‬ਛᕈሶߩᣉ⸳೑↪ࠍ㒰޿ߡ߽ᐕ㑆⚂㧝
500 ฬߢ޽ࠆ‫ᦨޕ‬ㄭߩ 5 ᐕ㑆ࠍߺࠆߣ‫౒ޔ‬ห೑↪ߩઙᢙ‫ੱޔ‬ᢙߣ߽Ⴧട௑ะߦ޽ࠅ‫ޔ‬ᐔᚑ 1011 ᐕߩᨰ⒖ォ߿ᐔᚑ 16 ᐕ
ᐲߩᄢቇᴺੱൻߦࠃߞߡ߽ߘࠇߪᄌࠊߞߡ޿ߥ޿‫౒ޔࠈߒ߻ޕ‬ห೑↪⚻⾌ߩలታࠃߞߡࡢ࡯࡚ࠢࠪ࠶ࡊ߿ࡒ࠾ࠪࡦࡐࠫ࠙
ࡓߩ㐿௅‫ޔ‬བྷ⸤⎇ⓥຬ߇Ⴧടߒߡ޿ࠆ‫ޕ‬⒖ォᤨߦセߴߡ౒ห೑↪ో૕ߦභ߼ࠆབྷ⸤⎇ⓥຬߩഀว߇ᷫߞߡ޿ࠆߩߪ‫౒ޔ‬ห
⎇ⓥߩᲧ㊀߇Ⴧ߃ߚߎߣߦࠃࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
ߎߎᢙᐕ‫‛ޔ‬ᕈ⎇ߢߪ‫⎇߿࡯ࡠࠚࡈ࠴࡯ࠨ࡝ޔ‬ⓥᯏ㑐⎇ⓥຬߥߤ‫ޔ‬࿖ౝᄖߩ⧯ᚻ⎇ⓥ⠪ߩ⍴ᦼណ↪ᨒࠍ⸳ߌߚࠅ‫ޔ‬ᄖ࿖
ੱቴຬᚲຬࠍ᜗⡜ߔࠆ೙ᐲࠍ᜛ᄢߐߖ‫⑼⾰‛ޔ‬ቇ⎇ⓥ⠪ߩ⢒ᚑߣ࿖㓙⊛⎇ⓥ᜚ὐߦ߻ߌߚⅣႺᢛ஻߽ⴕߞߡ޿ࠆ‫৻ޕ‬ᣇ‫ޔ‬
‛ᕈ⎇ߩ౒ห೑↪ߦ㑐ߒߡᓥ᧪߆ࠄᜰ៰ߐࠇߡ޿ࠆ⎇ⓥᚑᨐႎ๔ߩᒻ㜈ൻ߿㐳ᦼ⇐ቇ⎇ⓥຬ೙ᐲߩലᨐ⊛ㆇ↪ߩଦㅴߥߤ‫ޔ‬
⸃᳿ߔߴ߈໧㗴ὐ߽޽ࠆ‫‛ޕ‬ᕈ⎇߇వዉ⊛⎇ⓥ᜚ὐߣߒߡ౒ห೑↪ࠍஜోߦ⊒ዷߐߖߡ޿ߊߚ߼ߦߪ‫ోޔ‬࿖ߩ‛ᕈ⎇ⓥࠦ
ࡒࡘ࠾࠹ࠖߣߩㅪ៤߇ਇนᰳߢ޽ࠆ‫ޕ‬
⍴᳇⎇ⓥળ╬ߩ㐿௅ઙᢙ བྷ⸤⎇ⓥຬߩᢙ
ఱ߿୭๵͈‫ވ‬൳၌ဥȪಎ଻ঊ८၄৘ࡑȫ!
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ᑝ↰ ๺㚍
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲߢߪ 1960 ᐕࠃࠅᣣᧄේሶജ⎇ⓥᚲߩ⎇ⓥ↪ේሶἹߢਛᕈሶᢔੂߩో࿖౒ห೑↪ࠍ㐿ᆎߒߚ‫ޕ‬1969
ᐕߦߪ㧟ᚲຬߦࠃࠆਛᕈሶ࿁᛬ㇱ㐷߇Ⴧ⸳ߐࠇ‫ޔ‬1980 ᐕߩਛᕈሶ࿁᛬‛ᕈㇱ㐷߳ߩౣ✬‫ޔ‬1993 ᐕߩਛᕈሶᢔੂ⎇ⓥᣉ⸳
ߩᣂ⸳‫ޔ‬2003 ᐕߩਛᕈሶ⑼ቇ⎇ⓥᣉ⸳߳ߩᡷ⚵ࠍ⚻ߡ੹ᣣߦ⥋ߞߡ޿ࠆ‫ޕ‬㧡ᚲຬߦࠃࠅ‫⏛ޔ‬ᕈ࡮ᒝ⋧㑐࡮⚿᥏᭴ㅧߥߤ
ߩવ⛔⊛ߥ࿕૕‛ℂቇߦട߃ߡ‫ޔ‬Ḱ⚿᥏࡮ࠟ࡜ࠬ࡮࠰ࡈ࠻ࡑ࠲࡯ࠍ฽߻ᐢ޿⎇ⓥಽ㊁ࠍࠞࡃ࡯ߒߡ޿ࠆ‫ޕ‬
ᧄᣉ⸳ߪ᧲ᄢᨰࠠࡖࡦࡄࠬ߆ࠄ 100km ߶ߤർߦ޽ࠆ⨙ၔ⋵᧲ᶏ᧛ࠍᧄ᜚ߣߒ‫⎇ޔ‬ⓥ⠪ 10 ฬ‫ޔ‬ᛛⴚ⡯ຬ 3 ฬ‫ޔ‬੐ോ⡯
ຬ 9 ฬߢ᭴ᚑߐࠇߡ޿ࠆ‫ޕ‬ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ߩ JRR-3 ⎇ⓥἹߩ 9 บߩታ㛎ⵝ⟎ࠍ⛽ᜬ▤ℂߒ‫ోޔ‬࿖౒ห೑↪⎇ⓥ
ߦ޽ߚࠆߣߣ߽ߦ‫ޔ‬ᣉ⸳⁛⥄ߩ⎇ⓥ߅ࠃ߮ᄢቇ㒮↢ߩᢎ⢒ࠍዷ㐿ߒߡ޿ࠆ‫ޕ‬9 บߩⵝ⟎ߦട߃ߡ‫᧲ޔ‬ർᄢቇℂቇㇱ 1 บ‫ޔ‬
75
᧲ർᄢቇ㊄ዻ᧚ᢱ⎇ⓥᚲ 2 บ‫ޔ‬੩ㇺᄢቇේሶἹታ㛎ᚲ 2 บ߇ᄢቇߩⵝ⟎ߣߒߡ⸳⟎ߐࠇߡ޿ࠆ߇‫౒ޔ‬ห೑↪ߣ޿߁஥㕙
ߢߪ৻૕ߣߥߞߡㆇ༡ߦ޽ߚߞߡ޿ࠆ‫౒ޕ‬ห೑↪ߩฃઃ࡮ክᩏߥߤߪᣉ⸳߇⁛⥄ߢⴕߞߡ߅ࠅ‫ޔ‬ᐕ㧝࿁ߩ౏൐ߦኻߒ 300
⺖㗴߶ߤߩ↳⺧߇޽ࠆ‫ޕ‬ክᩏߪ 14 ฬߩታ㛎ክᩏᆔຬߣฦ⺖㗴 2 ฬߩᩏ⺒⠪ߦࠃߞߡⴕࠊࠇ‫ޔ‬ฦⵝ⟎⽿છ⠪ߩᛛⴚክᩏࠍ
ട߃ߡណᛯ߇್ᢿߐࠇࠆ‫ޕ‬ណᛯ⚿ᨐߪᚲᄖᆔຬ 9 ฬᚲౝᆔຬ 7 ฬ߆ࠄߥࠆᣉ⸳ㆇ༡ຬળߢᛚ⹺ߐࠇࠆ‫ߜ߁ߩߎޕ‬ណᛯߪ
70%‫⺖ޔ‬㗴ណᛯ㧔ೋᦼࡑࠪࡦ࠲ࠗࡓ㈩ಽ 0㧕ߪ 20%‫ޔ‬ਇណᛯߪ 10%ߣߥߞߡ޿ࠆ‫ޕ‬ᐕ㑆 175 ᣣߩࡆ࡯ࡓ࠲ࠗࡓ߇޽ࠆ߇‫ޔ‬
߅ࠃߘᐕ㑆 5000 ੱᣣߩ೑↪߇޽ࠆ‫⺖⺧↳ޕ‬㗴ߩ㧟ಽߩ㧞ߪ⏛ᕈ࡮ᒝ⋧㑐࡮⚿᥏᭴ㅧߥߤߩࡂ࡯࠼ࡑ࠲࡯ಽ㊁ߢ‫ޔ‬ᱷࠅߩ
߶ߣࠎߤ߇ࠟ࡜ࠬ࡮࠰ࡈ࠻ࡑ࠲࡯ߣߥߞߡ޿ߡ‫౒ޔ‬ห೑↪⎇ⓥ߇᏷ᐢ޿ಽ㊁ߢⴕࠊࠇߡ޿ࠆߎߣ߇ಽ߆ࠆ‫⺖⺧↳ޕ‬㗴ᢙߪ‫ޔ‬
1991 ᐕߦ JRR-3 ߇Ⓙ௛ߒߡ⃻ઍ⊛ߥਛᕈሶታ㛎⸳஻߇ᢛߞߚߎߣߦࠃࠅ 10 ୚⒟ᐲߦᕆჇߒߚ߇‫ ߎߎޔ‬5 ᐕߢߪ߶߷ห
ᢙߢផ⒖ߒߡ޿ࠆ‫ޕ‬ᣏ⾌ߪ‫ޔ‬ᣣᧄේሶജ⎇ⓥᚲߢߩᄢቇ߳ߩ⓹ญࠍ᧲ᄢේሶജ✚ว࠮ࡦ࠲࡯߇ᜂߞߡ᧪ߚߎߣࠍ෻ᤋߒ‫ޔ‬
᧲ᄢේሶജኾ᡹ߣ‛ᕈ⎇౒ห೑↪ߩਔᣇࠍ↪޿ߡ޿ࠆ߇‫⃻ޔ‬࿷ߪฦታ㛎⺖㗴ߦߟ޿ߡ 1㨪2 ฬߩᣏ⾌ᡰ⛎ࠍߔࠆߩ߇㒢⇇
ߣߥߞߡ޿ࠆ‫ޕ‬
‛ᕈ⎇ߢߪ‫ޔ‬1980 ᐕߦ✦⚿ߐࠇ⃻࿷ߪ 2014 ᐕ߹ߢᑧ㐳ߐࠇߡ޿ࠆᣣ☨⑼ቇᛛⴚ൮᜝දቯߦၮߠ߈‫☨ޔ‬࿖ࠛࡀ࡞ࠡ࡯
⋭ߣᢥㇱ⑼ቇ⋭ߩ㑆ߢ 1982 ᐕ߆ࠄⴕࠊࠇߡ޿ࠆᣣ☨⑼ቇᛛⴚදജ‫ޟ‬ਛᕈሶᢔੂ‫ߦޠ‬ේሶജᯏ᭴ߣߣ߽ߦᣣᧄ஥ߩၮᐙ⎇
ⓥᣉ⸳ߣߒߡෳടߒߡ޿ࠆ‫‛ޕ‬ᕈ⎇ߪࡉ࡞࠶ࠢࡋࡉࡦ࿖┙⎇ⓥᚲߦ㧟ゲಽశེࠍ⸳⟎ߔࠆߣߣ߽ߦᄙߊߩ⎇ⓥ⠪ࠍ☨࿖ߦ
ᵷ㆜ߒ‫ ߦߢ߹ࠇߎޔ‬355 ✬ߩ⺰ᢥ߇಴ ߐࠇߡ޿ࠆ‫ࠫ࠶࡝ࠢ࡯ࠝޕ‬࿖┙⎇ⓥᚲߣߩᣣ☨දജߩᚑᨐߪ 92 ✬ߩ⺰ᢥߣߥߞ
ߡ޿ࠆ‫ޕ‬࿖㓙౒ห⎇ⓥߪ╙㧟਎ઍ‛ᕈ⎇ߩਥⷐߥ⋡ᮡߩ৻ߟߢ޽ࠅ‫ޔ‬ਛᕈሶᣉ⸳ߢ߽ᣣ☨දജࠍਛᔃߦ‫ޔ‬ᣂߚߥ࿖㓙౒ห
⎇ⓥ‫⻉ࠕ࠾ࠕ࠮ࠝ࡮ࠕࠫࠕߦߊߣޔ‬࿖ߣߩㅪ៤ࠍᷓ߼ࠆߚ߼ߦ‫ޔ‬ቯᦼ⊛ߥ࿖㓙࠮ࡒ࠽࡯߿᜗⡜⎇ⓥࠍⴕߞߡ޿ࠆ‫ޕ‬
⃻࿷‫ޔ‬ᄢဳ㓁ሶടㅦེ J-PARC ࠍ↪޿ߚᣂߒ޿ࡄ࡞ࠬਛᕈሶḮ߇ JRR-3 ߩߔߋㄭߊߦᑪ⸳ਛߢ޽ࠆ‫ޕ‬2008 ᐕߦߪਛ
ᕈሶࡆ࡯ࡓߩଏ⛎߇㐿ᆎߐࠇࠆ੍ቯߣߥߞߡ޿ࠆ‫ޕ‬ടㅦེ߅ࠃ߮ਛᕈሶᢔੂታ㛎ⵝ⟎߇ቢోߦⒿ௛ߔࠆߦߪ‫ߩߘޔ‬ᓟ߽޽
ࠆ⒟ᐲߩᦼ㑆߇ᔅⷐߣߐࠇࠆߣᕁࠊࠇࠆ߇‫ޔ‬ㄭ޿዁᧪‫ᤨޔ‬㑆ᐔဋᒝᐲߢ⢋ࠍਗߴࠆቯᏱਛᕈሶḮߣࡄࠬ࡞ਛᕈሶḮߩ㧞ߟ
ࠍ೑↪ߢ߈ࠆ૕೙߇ߢ߈޽߇ࠆ‫ޕ‬ਛᕈሶߩ․ᕈ਄‫ᤨߟ߽ߩࠬ࡞ࡄޔ‬㑆᭴ㅧࠍ೑↪ߒߚ᷹ቯߦࠃߞߡቯᏱἹߢߪ࿎㔍ߢ޽ߞ
ߚಽ㊁ߢߩ⎇ⓥ߇น⢻ߦߥࠆߎߣ߇ᦼᓙߐࠇࠆ‫‛ޕ‬ᕈ⎇ߣߒߡߪ‫ޔ‬JRR-3 ߦ⎇ⓥߣ౒ห೑↪ߩゲ⿷ࠍ߅߈ߥ߇ࠄ߽‫ޔ‬น
⢻ߥ▸࿐ߢ J-PARC ߩᑪㅧߦ⽸₂ߒߡ޿ࠆ‫‛ޔߚ߹ޕ‬ᕈ⎇⁛⥄ߩಽశེࠍ߽ߟߎߣ߽⸘↹ߒߡ߅ࠅ‫ޔ‬ၮᧄߣߥࠆᑪ⸳ࡊ
࡜ࡦߩ૞ᚑ߽ߔߢߦቢੌߒߡ޿ࠆ‫ޕ‬
‛ᕈ⎇ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߪ‫ޔ‬ਛᕈሶḮࠍ߽ߟ⎇ⓥᯏ㑐ߣߪ೎ߩ‫ޔ‬࿖ౝᄖߩਛᕈሶࠍ↪޿ߚၮ␆⎇ⓥࠍਛᔃߣߒߚ౒ห
೑↪⎇ⓥᣉ⸳࡮ᢎ⢒ᯏ㑐ߣߒߡߩᓎഀࠍᨐߚߒߡ޿߈ߚ޿‫ޕ‬
‫ވ‬൳၌ဥࡄ‫ݪ‬ਫ਼̞̾̀ͅ!
ఱ߿ࡄ‫ݪ‬୭๵ͬ၌ဥ̳ͥࡄ‫ٸݪ‬໐̥ͣȇSPring-8!༶ৣ࢕͈၌ဥͅ‫!̱̀۾‬
ᄢ㒋ᄢቇᄢቇ㒮ၮ␆Ꮏቇ⎇ⓥ⑼ ⩲ ṑᱜ
߹ߕᚒ߇࿖ߦ߅ߌࠆ᡼኿శ⎇ⓥ‫ޔ‬ਛߢ߽ SPring-8 ⸘↹࡮ᑪ⸳࡮೑↪⎇ⓥߩ⚻✲ࠍᝄࠅ㄰ࠅ੹ᓟ‫᧲ޔ‬੩ᄢቇ‛ᕈ⎇ⓥᚲ
ࠍ฽߻⎇ⓥᯏ㑐߇ߤߩࠃ߁ߥ⎇ⓥᚢ⇛ߢ⊒ዷࠍ࿑ࠆߴ߈߆ࠍ⠨߃ߚ޿‫ ޕ‬᡼኿శಽ㊁ߢߪᣣᧄ᡼኿శቇળ߇ 1988 ᐕߦ‫ޔ‬
ᒰᤨ 40 ઍ߆ࠄ 50 ઍ೨ඨߩ⎇ⓥ⠪ߩᚻߢ⊒⿷ߒ‫ߩߘޔ‬ᓟ‫ޔ‬ᄢဳ X ✢శḮᑪ⸳ࠍ⋡ᜰߒߡ‫ޔ‬ᄙߊߩ⎇ⓥ⠪߇⸘↹ផㅴߦദ
ജߒ‫ޔ‬1993 ᐕߦߪ SPring-8 ೑↪⠪ᙣ⺣ળ߇⊒⿷ߒ‫ޔ‬ේ⎇࡮ℂ⎇࡮㜞ノᐲశ⑼ቇ⎇ⓥ࠮ࡦ࠲࡯߆ࠄߥࠆ౒ห࠴࡯ࡓߣㅪ
៤ߒߡ SPring-8 ⸘↹ߩౕ૕ൻߣ⸘᷹♽ߩᑪ⸳ߦ৻૕ߣߥߞߡදജߒߡ߈ߚ‫ޕ‬ᒰೋ 4 ᧄߩࡆ࡯ࡓ࡜ࠗࡦߩᑪ⸳߆ࠄᆎ߹ࠅ
⃻࿷ߢߪ 54 ᧄߩࡆ࡯ࡓ࡜ࠗࡦߢߩታ㛎߇ⴕࠊࠇߡ޿ࠆ‫ޕ‬
ᒰೋ⑼ቇᛛⴚᐡ〝✢ߦᴪߞߚ⸘↹ߢ޽ߞߚߚ߼ߦ‫ޔ‬ᒰᤨߩᢥㇱ⋭ߩో࿖ᄢቇ౒ห೑↪ߩ᭎ᔨߣߪᄢ߈ߊ⇣ߥࠆᒻߢߩ‫ޔ‬
⚵❱࡮੍▚࡮೑↪ᒻᘒ߇ណ↪ߐࠇ‫ߩߘޔ‬ᓟᐞ߫ߊ߆ߩᄌㆫࠍ⚻ߥ߇ࠄ‫⃻ޔ‬࿷ߩ⚵❱࡮೑↪ᒻᘒ߳ߣ⊒ዷߒߡ޿ࠆ‫ޕ‬
ߎߩ㑆‫⻉ޔ‬ᄖ࿖ߩᄢဳ᡼኿శᣉ⸳ߣᲧߴߡ‫⌀ޔ‬ⓨౝߦኽᱛߒߚᝌ౉శḮߩ㐿⊒߿‫ߡ߼ࠊ߈ޔ‬቟ቯߥ᡼኿శࡆ࡯ࡓߩଏ⛎‫ޔ‬
ߐࠄߦߪ᰷☨ߩ᡼኿శᣉ⸳ߢߪ᭴ᗐߔࠄߐࠇߥ߆ߞߚエ X ✢ၞߢߩ೑↪ߥߤ‫ޔ‬SPring-8 ߢߩ⎇ⓥߪ਎⇇ࠍ࡝࡯࠼ߔࠆಽ
㊁߇ዋߥߊߥ޿‫ޕ‬
৻ᣇߢ‫▚੍ߩߘޔ‬ᒻᘒ߿⚵❱਄ߩ໧㗴ὐ߆ࠄ‫⻉ޔ‬ᄖ࿖ߩᣉ⸳߇߶߷ࡆ࡯ࡓ࡜ࠗࡦࠍᦨᄢ㒢ᑪ⸳ߒߡ೑↪ߒߡ޿ࠆߩߦኻ
ߒߡ‫ޔ‬SPring-8 ߢߪ߹ߛචᢙᧄߩᑪ⸳ᧂቢੌࡆ࡯ࡓ࡜ࠗࡦࠍᱷߒߡ߅ࠅ‫ߩߘޔ‬ᑪ⸳੍▚ߩᚻᒰ߇࿎㔍ߢ޽ࠆߣߩᱷᔨߥ
⁁ᴫ߇⛯޿ߡ޿ࠆ‫ޕ‬ᔕ൐⺖㗴ߪჇടߩ৻ᣇߢ‫ޔ‬ណᛯࡆ࡯ࡓ࠲ࠗࡓߪᐔဋߢ߽ 60-70%‫ ߪߡߞࠃߦࡦࠗ࡜ࡓ࡯ࡆޔ‬25%ࠍਅ
࿁ࠆࠤ࡯߽ࠬ಴ߡ޿ࠆ‫ޕ‬
․ߦᚢ⇛ᵴ↪ࡊࡠࠣ࡜ࡓߦኻߔࠆ⺖㗴ណᛯ₸߇ 70%એ਄‫↥ޔ‬ᬺ೑↪ߩ⺖㗴ណᛯ₸߇ 60㧑⒟ᐲߢ޽ࠆߩߦኻߒߡ‫ޔ‬ၮ␆
⎇ⓥߩ⺖㗴ណᛯ₸ߪ޿ߊߟ߽ߩಽ㊁ߢ 50%ࠍਅ࿁ࠆ⁁ᴫߦߥߞߡ߅ࠅ‫ޔ‬
76
೑↪ᚢ⇛ߩ⷗⋥ߒ߇ⷐ⺧ߐࠇࠆࠃ߁ߦߥߞߡ߈ߡ޿ࠆ‫ޕ‬
ߎߩࠃ߁ߥ⁁ᴫߢߐࠄߦ৻⥸⺖㗴ߩ೑↪⠪ߪ‫ޔ‬ᣏ⾌ṛ࿷⾌ߩ⥄Ꮖ⽶ᜂߦട߃ߡ‫ޔ‬ᶖ⠻ຠߩ૶↪㊂ࠍ⽶ᜂߒߥߌࠇ߫ߥࠄ
ߕ‫ࡓ࡯ࡆߚ߹ޔ‬ណᛯ₸ߩૐߐ᡿ߦᄢቇ㒮↢ߩ⎇ⓥ࠹࡯ࡑߣߒߡ SPring-8 ᡼኿శ೑↪⎇ⓥࠍⴕ߁ߎߣ߇࿎㔍ߦߥߞߡ޿ࠆ
⎇ⓥࠣ࡞࡯ࡊ߇ዋߥߊߥ޿‫ޕ‬
ߎߩࠃ߁ߥߎࠇ߹ߢ਎⇇ࠍ࡝࡯࠼ߒߡ߈ߚ᡼኿శၮ␆⎇ⓥߩ࿎㔍ߐࠍ SPring-8 ߦ߅޿ߡᅤ૗ߦస᦯ߔࠆ߆ߩ⼏⺰߇ᔅ
ⷐߣ⠨߃ࠄࠇࠆ‫ߚ߹߇ࠇߘޕ‬ᚒ߇࿖ߩ౒ห೑↪ߩ࿷ࠆߴ߈ᆫߦ෻ᤋߐࠇࠆߎߣࠍᦸߺߚ޿‫ޕ‬
໤଻ࡄ͈͒౷༷̥͈ͣါབ!
ᐢፉᄢቇ ᄢቇ㒮వ┵‛⾰⑼ቇ⎇ⓥ⑼‫ޔ‬వㅴᯏ⢻‛⾰⎇ⓥ࠮ࡦ࠲࡯ 㜞⇗ ᢅ㇢
͉̲͛ͅ!
‛ᕈࠦࡒࡘ࠾࠹ࠖ࡯ߣ‛ᕈ⎇ⓥᚲ߇෺ᣇ⊛ߦ⦟޿ೝỗࠍਈ߃วߞߡ‫ޔ‬ਔ⠪߇⊒ዷߔࠆߚ߼ߦ‫‛ޟޔ‬ᕈ⎇߳ߩ࿾ᣇ߆ࠄߩ
ⷐᦸ‫ࠍޠ‬ㅀߴ߹ߔ‫⥄⑳ޕ‬りߪ 1984 ᐕ 4 ᦬߆ࠄ 4 ᐕ㑆‫‛ޔ‬ᕈ⎇ߩ⍹Ꮉᓕ㕏ᚲຬߩ߽ߣߢഥᚻߣߒߡᏗ࿯㘃ൻว‛߿⿥વ
ዉ㌃㉄ൻ‛ࠍ⎇ⓥߒ‫ߩߘޔ‬ᓟᐢፉᄢቇߦ⡯ࠍᓧߡ߆ࠄ߽‛ᕈ⎇ߦᄢᄌ߅਎⹤ߦߥߞߡ޿߹ߔ‫⹏⸘⸳⾰‛ޔߦ․ޕ‬ଔᣉ⸳‫ޔ‬
ᣂ‛⾰⑼ቇㇱ㐷‫ޔ‬ᭂ㒢ⅣႺ‛ᕈㇱ㐷‫ޔ‬ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳‫゠ޔ‬㆏᡼኿‛ᕈ⎇ⓥᣉ⸳ߩᣇ‫౒ߩߣޘ‬ห⎇ⓥߦࠃࠅ‫ޔ‬Ꮧ࿯㘃
߿࠙࡜ࡦࠍᲣ૕ߣߔࠆ㊄ዻ㑆ൻว‛‫⁁ࠧࠞޔ‬ൻว‛ߦߟ޿ߡᄙߊߩᚑᨐࠍ᜼ߍࠆߎߣ߇಴᧪߹ߒߚ‫‛ޔߦࠄߐޕ‬ᕈ⎇ߢ
ඳ჻ࠍขᓧߒߚ 3 ฬࠍࡐࠬ࠼ࠢߣߒߡฃߌ౉ࠇߚߩߦ⛯޿ߡ‫ޔ‬ഥᚻ߽߅ㄫ߃ߒ߹ߒߚ‫ߩߎޕ‬᭽ߥ୘ੱ⊛ߥ౒ห೑↪࡮౒
ห⎇ⓥߣ੤ᵹߩ⚻㛎߆ࠄᰴߩࠃ߁ߥ໧㗴ࠍឭ⿠ߒ߹ߔ‫ޕ‬
ါབ͂࿚ఴ೹ܳ!˥! ๊֚ა!
٤‛ᕈ⎇ߩᚲຬߣ੐ോㇱ⡯ຬߪ‛ᕈࠦࡒࡘ࠾࠹ࠖ࡯ߩਛᩭߢ޽ࠆߣߩ⥄ⷡࠍᜬߞߡ޿ࠆ߆㧫
ᣂߒ޿ầᵹࠍ૞ࠈ߁ߣߒߡ޿ࠆ߆‫ ޔ‬Phys. Rev. Lett. ࠍ಴ߖ߫⦟ߒߣߒߡ޿ߥ޿߆
٤‛ᕈ⎇ⓥࡀ࠶࠻ࡢ࡯ࠢߩ‫ޟ‬࿖ಽኹ‫ޟ߿ޠ‬ਛ࡮ዊⷙᮨߩ᜚ὐ‫‛ߣޠ‬ᕈ⎇ߩㅪ៤ߪㅴࠎߢ޿ࠆ߆㧫
࿾ᣇߦ⿷ࠍㆇࠎߢ‫ޔ‬ትવߒߚࠅ⼏⺰ߒߡ޿ࠆ߆㧫
࿾ᣇᄢቇߩቴຬᢎຬߣߥߞߡ‫ోޔ‬࿖ߩቇ↢ߦೝỗࠍਈ߃ߡ޿ࠆ߆㧫
KEK ߩ⚵❱⊛ᵴേߣߩᲧセ㧕
٤਎⇇‫ߩࠕࠫࠕߦ․ޔ‬᜚ὐߣߩㅪ៤ߪㅴࠎߢ޿ࠆ߆㧫
٤ੱ੐੤ᵹߢߪർᶏ㆏߆ࠄᴒ✽߹ߢߦ⋡߇ዯ޿ߡ޿ࠆ߆㧫
‛ᕈ⎇ߩඳ჻ขᓧ⠪‫ޔ‬ഥᚻ‫ޔ‬ᚲຬࠍߤࠎߤࠎ࿾ᣇ߳
٤ࠦࡒࡘ࠾࠹ࠖ࡯ࠍઍ⴫ߒߡᄢဳ੍▚㧔․ቯ㗔ၞ⎇ⓥߥߤ㧕ࠍ↳⺧ߒߡ޿ࠆ߆㧫
ါབ͂࿚ఴ೹ܳ!Ԇ! ‫ވ‬൳၌ဥ‫۾‬Ⴒ!
٤ᰴᦼਛᦼ⸘↹ߩ╷ቯߢ౒ห೑↪ߦ㑐ߔࠆㇱಽߪ౒ห೑↪ᣉ⸳ኾ㐷ᆔຬળߢክ⼏ߒߡ᰼ߒ޿‫ޕ‬
౒ห೑↪ߩ೙ᐲ߿੍▚㈩ಽࠍ⷗⋥ߔߦߪ⦟޿ᯏળ 㧔੐ോㇱߣߩ౒ห߇ᄢಾ㧕
٤੐ോㇱ‛ᕈ⎇ᜂᒰߪ౒ห೑↪ࠍࠃߊℂ⸃ߒߡ޿ࠆ߆㧫
଀㧦ኋ⥢೑↪⾌ᡰᛄ޿ߢ‫ޟ‬㊒㌛ߩή޿ࠃ߁ߦ‫ߪޠ‬ฎ޿‫ޕ‬
٤౒ห⎇ⓥ⠪߿ฦ⒳ᆔຬ߇ᚲຬߩ಴り⎇ⓥቶ๟ㄝߦ஍ߞߡ޿ߥ޿߆㧫
٤㐿⊒ߐࠇߚᣂᚻᴺ߿ⵝ⟎߇࿾ᣇߦ᥉෸ߐࠇߡ޿ࠆ߆㧫
٤ᆔຬળ߿⎇ⓥળ㐿௅ᣣ⒟ߪ࿯ᣣ߿ભᣣ߽฽߼ߡ᰼ߒ޿‫ޕ‬ᐔᣣߩ᝼ᬺࠍભ⻠ߔࠆߣ‫ޔ‬ᢎ⢒ߦᡰ㓚߇಴ࠆߛߌߢߥߊ‫ޔ‬ቇ
↢߆ࠄߩ⹏ଔ߽ਅ߇ࠆ‫ޕ‬
٤‫‛ޟ‬ᕈ⎇ߛࠃࠅ‫ߩ↢ߪߦޠ‬ჿ߇ዋߥ޿‫ޕ‬ᄙߊߩ㗁ࠍභ߼ࠆࠪࡦࡐࠫ࠙ࡓߩ⊒⴫ⷐᣦߪࡎ࡯ࡓࡍ࡯ࠫߦឝタߔࠇ߫ࠃ޿‫ޕ‬
ઍࠊࠅߦ‫ޔ߫߃଀ޔ‬ᣂછᢎຬ߿஗ᐕࠍㄫ߃ߚᢎ⡯ຬߩ᜿ᜦ‫ޔ‬ඳ჻⺰ᢥ㗴⋡ߥߤߪߤ߁߆‫ޕ‬
٤ࠠࡖࡦࡄࠬౝㇱߦࠦࡦࡆ࠾ࠛࡦࠬࠬ࠻ࠕߣᦺ㘩ࠍขࠇࠆᣉ⸳߇᰼ߒ޿‫ޕ‬
٤㧢㓏ߩ⻠⟵ቶ೨ߦߪ‫ޔ‬ḡ⨥ߩ↪ᗧ߇ߢ߈ࠆᏱ⸳࠹࡯ࡉ࡞߇޽ࠇ߫ଢ೑‫ޕ‬
ᑈਅߩ㔚᳇ࠦࡦ࠮ࡦ࠻ߩ਄ߦ޽ࠆ┙ᵷߥ⛗ߪ೎ߩ႐ᚲߦ⒖ߒߡ‫ࠍ࡞ࡉ࡯࠹ߦߎߘޔ‬Ᏹ⸳‫ޕ‬
77
‫ވ‬൳ࡄ‫ݪ‬ਫ਼̞̾̀ͅ!–!‫ٸ‬໐̥͈ͣփࡉါབ̞̾̀ͅ!
ᣂẟᄢቇ ᄢቇ㒮⥄ὼ⑼ቇ⎇ⓥ⑼ ᓟ⮮ ノቁ
͉̲͛ͅ!
ᣣᧄߩ⚻ᷣߪ਎⇇ߩ࠽ࡦࡃ࡯ࡢࡦߣ⸒ࠊࠇࠆ߹ߢߦᚑ㐳ߒ‫⚻ޔ‬ᷣᄢ࿖ߣߒߡߩ⛘㗂ᦼࠍ⚻㛎ߒ‫ޔ‬1992 ᐕߩࡃࡉ࡞⚻ᷣ
ߩ፣უߦ⥋ߞߚ‫ࠇߎޕ‬એᓟ‫ޔ‬ᣣᧄߪ↥ᬺᛛⴚߛߌߢߪߥߊၮ␆⎇ⓥߩಽ㊁ߢ᰷߽☨ߦ⢋ࠍਗߴࠆࠃ߁ߦߥࠅ‫⁛ޔ‬ഃᕈߦၮ
ߠߊ࿖㓙⎇ⓥ┹੎ߦෳ౉ߢ߈ࠆࠃ߁ߦߥߞߚ‫ޕ‬1996 ᐕߦߥࠅ⑼ቇᛛⴚၮᧄᴺ߇೙ቯߐࠇ‫┹ޔ‬੎⊛⎇ⓥ⾗㊄ߩ㘧べ⊛Ⴧട
ߦࠃߞߡၮ␆⎇ⓥࠍ߼ߋࠆⅣႺ߽㘧べ⊛ߦᡷༀߐࠇߡ߈ߚߣ⸒߃ࠆ‫ޕ‬ታ㛎ⵝ⟎ࠍ౉ᚻߢ߈ߥ޿⽺࿎ߩ⁁ᴫߪᰴ╙ߦᡷༀߐ
ࠇߡ߈ߚ‫ޕ‬ᣣᧄߩ⎇ⓥⅣႺ߇ో૕ߣߒߡ⽺࿎ߢ޽ߞߚᤨઍ߆ࠄ‫ޔ‬2005 ᐕᐲ߆ࠄߪ࿖┙ᄢቇᴺੱ߇⊒⿷ߒ‫ޔ‬ᄢቇ⁛⥄ߩข
ࠅ⚵ߺߦࠃࠆ⎇ⓥⅣႺߩᡷༀ߇ㅴⴕߒߡ޿ࠆ⃻࿷ߣߢߪ‫✚ޔ‬࿖ಽኹߣߒߡߩ‛ᕈ⎇ⓥᚲߩᓎഀ߽ᄌൻߒߡ߈ߡ޿ࠆߣ⠨߃
ࠄࠇࠆ‫ޕ‬
૧‫ګ‬ఱ‫ڠ‬໤ৗၾঊ‫ݪࡄڠش‬ΓϋΗȜ!
ᰴߦ‫ޔ‬࿾ᣇᄢቇߩ৻ߟߢ޽ࠆߢ޽ࠆᣂẟᄢቇߩ‛ᕈ⎇ⓥߩ⁁ᴫߦ߽⸅ࠇߚ޿‫ޕ‬2000 ᐕߦᣣᧄቇⴚળ⼏ᣣᧄቇⴚળ⼏‛
ℂቇ⎇ⓥㅪ⛊ຬળ߆ࠄ಴ߐࠇߚኻᄖႎ๔‫‛ޟ‬ᕈ⎇ⓥ᜚ὐᢛ஻⸘↹ߩౕ૕ൻߦะߌߡ‫‛ޔߡ޿߅ߦޠ‬ᕈ⎇ⓥᚲߪ‫✚ޟ‬࿖ಽ
ኹ‫ߡߒߣޠ‬૏⟎ߠߌࠄࠇߚ‫ޕ‬ᣂẟᄢቇ߽ో࿖ 18 ‛ᕈ⎇ⓥ᜚ὐߔߥࠊߜ‫ޟ‬࿖ಽኹ‫ߡߒߣޠ‬૏⟎ߠߌࠄࠇߚߎߣߪ‫ޔ‬ᣂẟᄢ
ቇ߅ߌࠆߘߩᓟߩ᜚ὐᢛ஻ߩ㊀ⷐߥᜰ㊎ߣߥߞߚ‫ޕ‬2002 ᐕᐲ⵬ᱜ੍▚ߦࠃߞߡ ᩺ߩࡋ࡝࠙ࡓᶧൻᯏߩ⸳⟎߇⹺߼ࠄࠇ‫ޔ‬
2004 ᐕߦߪᴺੱൻߒߚᣂẟᄢቇ⁛⥄ߩ್ᢿߦၮߠ߈ቇౝ⸳⟎ߒߚ‛⾰㊂ሶ⑼ቇ⎇ⓥ࠮ࡦ࠲࡯ߦ߅޿ߡ‫ޔ‬ᶧ૕ࡋ࡝࠙ࡓߩ
቟ቯଏ⛎૕೙ࠍ⏕┙ߒߚ‫ߡߞࠃߦࠇߎޕ‬ᣂẟᄢቇߢߩ‛ᕈ⎇ⓥ߇ᄢ߈ߊടㅦߐࠇߚߣታᗵߒߡ޿ࠆ‫ޔ߫߃ߣߚޕ‬ૐ᷷⿥㖸
ᵄ⸘᷹ߦࠃࠆࠪ࡝ࠦࡦ⚿᥏ਛߩේሶⓨሹߩ᷹ⷰ‫ޔ‬᳓⚛ๆ⬿ว㊄ࠍ↪޿ߚ᳓⚛࠮ࡦࠨ࡯ߩ㐿⊒ߥߤ‛ᕈ⎇ⓥ߇ၮ␆ߣߥߞߚ
⾆㊀ߥᚑᨐ߇↢߹ࠇߡ᧪ߡ޿ࠆ‫ࠎࠈߜ߽ޕ‬චಽߣߪ⸒߃ߥ޿߹ߢ߽‫ޔ‬࿾ၞߩᄢቇߢߩ‛ᕈ⎇ⓥ᜚ὐߩᢛ஻ߪㅴࠎߢ޿ࠆߣ
⸒߃ࠆ‫ޕ‬
໤଻ࡄ‫ݪ‬ਫ਼͈͒ါབ!
‛ᕈ⎇ⓥᚲߪ‛ᕈ⎇ⓥࠦࡒࡘੑ࠹ࠖ࡯ߩ‫✚ޟ‬࿖ಽኹ‫ߩߡߒߣޠ‬ᓎഀ߇ᦼᓙߐࠇߡ޿ࠆ‫‛ޕ‬ᕈታ㛎ߩ┙႐߆ࠄߪ‫ޔ‬ථ⿧ߒ
ߚ‛ᕈታ㛎ࠍផㅴߔࠆ᜚ὐߣߒߡߩ‛ᕈ⎇ⓥᚲࠍᦸߺߚ޿‫‛ޕ‬ᕈ⎇ⓥߪర᧪ዊߐ޿ࠣ࡞࡯ࡊߢߩ୘ᕈ⊛ߥ⎇ⓥ߇ၮᧄߣ
ߥߞߡ޿ࠆ‫ߩߎޕ‬ᗧ๧ߢ‫ోޔ‬࿖ߩᄢቇ࡮࿾ၞߢߩ⎇ⓥ᜚ὐߩᢛ஻߇㊀ⷐߢ޽ࠅ‫⁛ߚࠇ߹↢ߢߎߘޔ‬ഃ⊛ߥ⎇ⓥᚑᨐ߿ᣂߒ
޿ࠕࠗ࠺ࠕࠍ‛ᕈ⎇ⓥᚲߩථ⿧ߒߚ⎇ⓥ⸳஻ߩ౒ห೑↪ߦ❬ߍࠆߎߣ߇ᤚ㕖ߣ߽ᔅⷐߢ޽ࠆ‫ౕޕ‬૕⊛ߦߪᒝ⏛႐‫ޔ‬㜞࿶‫ޔ‬
⿥ૐ᷷ߥߤߩᄙ㊀ᭂ㒢ߩታ㛎߿ේሶἹࠍ↪޿ߚਛᕈሶᢔੂߥߤߩታ㛎߇⠨߃ࠄࠇࠆ‫‛ޕ‬ᕈ⎇ⓥᚲߩታ㛎⸳஻ߪ‫ᤨ⃻ޔ‬ὐߢ
߽਎⇇ߩ╙৻⚖ߩ᳓Ḱߢ޽ࠆ߇‫੹ޔ‬ᓟߣ߽਎⇇࠻࠶ࡊ᳓Ḱߩታ㛎ࠍㆀⴕߔࠆߦߪ‫ޔ‬࿎㔍ߥ㆏ߢߪ޽ࠆ߇㐿⊒⎇ⓥࠍㅴ߼ࠆ
ᔅⷐ߇޽ࠈ߁‫‛޿ߒ⟤ޕ‬ℂࠍ⺆ࠆࠛ࡟ࠟࡦ࠻ߥ⺰ᢥ߽ᭂ߼ߡ㊀ⷐߥᚑᨐߢ޽ࠆ߇‫⁛ޔ‬ഃ⊛ߥታ㛎ᚻᴺߩ㐿⊒⎇ⓥߩ⺰ᢥ߽
ᱜᒰߦ⹏ଔߔࠆᔅⷐ߇޽ࠆ‫ߟ৻߁߽ޕ‬㊀ⷐߢ޽ࠆߩߪ‫‛ޔ‬ᕈ⎇ⓥᚲ߇ో࿖‛ᕈ⎇ⓥࠦࡒࡘੑ࠹ࠖ࡯ߩ✚࿖ಽኹߣߒߡਛᔃ
⊛ߥ૏⟎ߦ޽ࠅ⛯ߌࠆߎߣࠍᦸߺߚ޿‫ޕ‬୘ᕈ⊛⁛ഃ⊛ߥ⎇ⓥࠍផㅴߔࠆߩߪੱ⊛੤ᵹ߇ਇนᰳߢ޽ࠅ‫ߢ߹ࠇߎޔ‬૞ࠅ਄ߍ
ߡ߈ߚ౒ห೑↪‫ޔ‬ቴຬ⎇ⓥຬ‫ޔ‬⍴ᦼ⎇ⓥળ‫ޔ‬ṛ࿷ဳߥߤో࿖౒ห೑↪૕೙ࠍߐࠄߦ⊒ዷߐߖࠆߎߣ߇ᦸ߹ࠇࠆ‫ޕ‬
COE ̷͈ఈ͈ఱ߿঩߄শయ͂໤଻ࡄ‫ݪ‬঩߄
‛ᕈ⎇ ኅ ᵏᒄ
਄⸥ߩ࠲ࠗ࠻࡞ߪ਎⹤ੱ߆ࠄਈ߃ࠄࠇߚ߽ߩߢ޽ࠆ‫ߏޕ‬ଐ㗬ߩᗧ࿑ߦᴪߞߚ⹤߇ߢ߈ࠆ߆ߤ߁߆⥄ାߪߥ޿߇‫┹ޔ‬੎⊛
⾗㊄‫⑼ߦ․ޔ‬ቇ⎇ⓥ⾌⵬ഥ㊄ࠍ߼ߋࠆᦨㄭߩേ߈ߦߟ޿ߡႎ๔ߔࠆ‫⑼ޕ‬ቇᛛⴚၮᧄ⸘↹ߦၮߠ߈‫ޔ‬1 ᦼ㧔5 ᐕ㧕ߏߣߦ
20㨪25 ళ౞ߣ޿߁⑼ቇᛛⴚ㑐ㅪ੍▚ߩ㊀ὐᛩ⾗߇ߥߐࠇߡ޿ࠆ‫┹߽ߢ߆ߥޕ‬੎⊛⾗㊄ߣ޿߁ࠞ࠹ࠧ࡝࡯ߩ߽ߩߪㆊ෰ 10
ᐕ㑆ߦᄢ᏷ߦჇ㗵ߐࠇ⚂ 4,700 ం౞(H18)ߦ㆐ߒߡ޿ࠆ‫ߩߘߪ⾌⎇⑼ޕ‬ౝߩ⚂ 40㧑ࠍභ߼ 1,900 ంߢ޽ࠆ‫╙ޕ‬㧝ᦼၮᧄ⸘
↹ߩࠬ࠲࡯࠻ᤨὐ(H8)ߩ⚂ 1,000 ం߆ࠄ߶߷୚Ⴧߒߡ޿ࠆ‫৻ޕ‬ᣇ‫ߩߎޔ‬㑆ߦ⋭ᐡౣ✬‫ޔ‬funding agency ߩ⁛┙ᴺੱൻ‫ޔ‬
࿖┙ᄢቇߩᴺੱൻߥߤ⎇ⓥⅣႺ߿੍▚ភ⟎ߦᄢ߈ߥᓇ㗀ࠍ෸߷ߔߐ߹ߑ߹ߥേ߈߇޽ߞߚ‫ޕ‬
ߎࠇ߹ߢ㗅㘑ߦਸ਼ߞߡિ߮ࠍ␜ߒߡ߈ߚ┹੎⊛⾗㊄ߢ޽ࠆ߇‫ᦨޔ‬ㄭߢߪ⽷᡽෼ᡰᡷༀࠍఝవߔࠆ᡽ᐭߩᣇ㊎߿‫⎇ޔ‬ⓥ⾌
ࠍ߼ߋࠆਇ␽੐߿⎇ⓥ⾌ߩㆊᐲߩ㓸ਛߦኻߔࠆᛕ್ߥߤ߇ㅒ㘑ߣߥߞߡ‫ߩ▚੍ޔ‬િ߮ߪ஗ṛ௑ะߦ޽ࠆ‫ޕ‬
⑼ቇᛛⴚ࡮ቇⴚክ⼏ળቇⴚಽ⑼ળ⎇ⓥ⾌ㇱળߢߪ‫ޔ‬ቇⴚ⎇ⓥᵴേࠍᡰ߃ࠆ⎇ⓥ⾌ߦ㑐ߒߡ‫ޔ‬ၮ⋚⊛⚻⾌ߣ┹੎⊛⾗㊄ߦ
ࠃࠆ࠺ࡘࠕ࡞ࠨࡐ࡯࠻ߩᔅⷐᕈ‫⎇ޔ‬ⓥ⠪ߩ⥄↱ߥ⊒ᗐߩၮߠߊቇⴚ⎇ⓥࠍᡰ߃ࠆ⑼ቇ⎇ⓥ⾌⵬ഥ㊄ߩ㊀ⷐᕈ‫࡞࡯ࡇࠕࠍޔ‬
ߒߡ޿ࠆ‫ᧄߦ․ޔࠄ߇ߥߒ߆ߒޕ‬ᐕߪ৻ㅪߩਇ␽੐╬ߩᓇ㗀ߢ㒐ᚢߦ࿁ࠄߑࠆࠍᓧߥ߆ߞߚߩ߇ታᖱߢ޽ࠆ‫ߦ⾌⎇⑼ޕ‬㑐
78
ߔࠆᐔᚑ 19 ᐕᐲ᭎▚ⷐ᳞ߢߪ‫ޔ‬ቇⴚᝄ⥝ળ߳ߩᦝߥࠆ⒖▤‫ޔ‬㑆ធ⚻⾌ࠍភ⟎ߔࠆ⎇ⓥ⒳⋡ߩ᜛ల‫⧯ޔ‬ᚻᡰេ╷‫ޔ‬㔚ሶࠪ
ࠬ࠹ࡓൻߩផㅴ‫ޔ‬ክᩏ࡮⹏ଔ૕೙ߩలታ‫ࠅ⋓߇╬ޔ‬ㄟ߹ࠇߡ޿ࠆ‫ޕ‬ᣂⷙᔕ൐ߩណᛯ₸ߪ⃻࿷ 25㧑ࠍਅ࿁ࠆ⒟ᐲߢ޽ࠆ߇‫ޔ‬
ߎࠇࠍ 30㧑บߦਸ਼ߖࠆߎߣ߇ᧄ╭ߢ޽ࠆ‫ޕ‬᡽╷᳿ቯ⠪߇ᛴߊ‫߁޿ߣޠ߈߹ࠄ߫ޟ‬ශ⽎ࠍ޿߆ߦᛂ⎕ߔࠆ߆߇⺖㗴ߢ޽ࠆ‫ޕ‬
㧔⑳ߪ‫ޟޔߊߥߪߢޠ߈߹ࠄ߫ޟ‬᳓᠋߈‫޿⸒߁޿ߣࠆ޽ߢޠ‬ᣇࠍߒߡ޿ࠆ‫߇⧘޿⦟ࠅ߹ߟޕ‬⢒ߞߡߊࠆ࿯ფߦ᳓㆜ࠅࠍ⛘
߿ߐߥ޿ߎߣ߇㊀ⷐߛߣ޿߁ᗧ๧ߢ޽ࠆ߇࡮࡮࡮‫ޕ‬㧕
‫‛ޟ‬ᕈ⎇ⓥ᜚ὐᢛ஻⸘↹‫╙ߪޠ‬㧝㧣ᦼߩቇⴚળ⼏‛ℂቇ⎇ⓥㅪ⛊ᆔຬળߩኻᄖႎ๔ߣߒߡ಴ߐࠇ‫ߩߘޕ‬ᓟ‫ޔ‬18࡮19 ᦼ
ߦ‫‛ޟ‬ᕈ⎇ⓥ᜚ὐᢛ஻⸘↹ߩౕ૕ൻߦ߻ߌߡ‫߁޿ߣޠ‬ႎ๔߇‛ᕈኾ㐷ᆔຬળߢขࠅ߹ߣ߼ࠄࠇߚ‫ߩ߆ߟߊ޿ޕ‬ᄢቇߢߩ᭎
▚ⷐ᳞ߦᄙዋߩេ⼔ߣߥߞߚ߆ߣᕁ߁߇‫ޔ‬࿖ಽኹ᭴ᗐߩᧄ᧪ߩࠬࡇ࡝࠶࠻ߢ޽ࠆ᜚ὐᢛ஻ߣߘࠇࠍ೑↪ߒߚ౒ห⎇ⓥࠍᜂ
଻ߔࠆ੍▚ភ⟎ߩ₪ᓧߦ߹ߢߪ⥋ߞߡ޿ߥ޿‫ߩߘޕ‬㑆ߦ‫ޔ‬࿖┙ᄢቇᴺੱൻ߿ COE21 ߥߤߩേ߈߇޽ߞߡ‫ޔ‬᜚ὐᢛ஻⸘↹
ߩ⼏⺰ߪ⣁ߦ⟎߆ࠇߚᗵ߇޽ࠆ‫ޔࠄ߇ߥߒ߆ߒޕ‬ᴺੱൻ╬ߦࠃߞߡዊⷙᮨ⎇ⓥࠣ࡞࡯ࡊߩ⎇ⓥⅣႺߩഠൻ߇⿠ࠅߟߟ޽ࠆ
⃻࿷‫ޔ‬᜚ὐᢛ஻⸘↹ߦߪᣂߚߥᗧ๧߇޽ࠆ߽ߩߣ⠨߃ࠆ‫ޕ‬ᣂ↢ቇⴚળ⼏ߩ‛৻ಽ⑼ળߣ‛ᕈࠣ࡞࡯ࡊ߇ㅪ៤ߒߡ⼏⺰ࠍㅴ
߼ࠆߩ߇ㆡᒰߣᕁࠊࠇࠆ‫ޕ‬
઀ܰ࿅ࡄ‫ݪ‬৒̤̫ͥͅࡄ‫͂ݪ‬ఉအ଻͈‫ږ‬༗
℄⃿ᄢቇ ℂ
⍫ࡩፒ స㚍
)ˍȫ͉̲͛ͅ ࿖┙ᄢቇߩᴺੱൻߣᯏࠍ৻ߦߒߡᕆㅦߦㅴⴕߒᆎ߼ߚ੐ᘒߩ৻ߟߦ‫ޔ‬ዊⷙᮨ⎇ⓥቶߩ⎇ⓥ⾗㊄⏕଻߇
㔍ߒߊߥࠅ‫⎇ޔ‬ⓥߩ⛽ᜬ߇ ᔨߐࠇࠆߎߣ߇޽ߍࠄࠇࠆ‫ޔߢ߹੹ޕ‬ၮ⋚ᩞ⾌ߣߒߡ଻㓚ߐࠇߡ޿ߚᦨૐ㒢ߩᢎ⢒⎇ⓥ⾌
߇‫ޔ‬ᔅⷐ⚻⾌߆ࠄߪߕߐࠇ‫⾗ޔ‬㊄㈩ಽߩේℂ߇‫┹ޟ‬੎ߣ⹏ଔ‫ߦޠ‬ಾࠅᦧ߃ࠄࠇߚߎߣߦࠃࠆ‫⛽ߢ߹੹ޕ‬ᜬߐࠇߡ߈ߚዊ
ⷙᮨ⎇ⓥቶߩᢎ⢒⎇ⓥ⾗㊄ߩ⏕଻߇‫ޔ‬ᣂ೙ᐲߢ࿎㔍ߦߥࠆ੐ᘒߪ‫⎇ޟߚ߈ߡࠇߐ଻⏕ߢ߹੹ޔ‬ⓥᄙ᭽ᕈ‫߇ޠ‬⎕უߐࠇࠆ
ෂᯏߣ⚿߮ߟ޿ߡ޿ࠆ‫ޕ‬ዊⷙᮨ⎇ቶߩෂᯏߪߘߩ߹߹⎇ⓥᄙ᭽ᕈߩෂᯏߥߩߢ޽ࠆ‫ޕ‬ዊⷙᮨ⎇ⓥቶߩ⃻⁁ࠍႎ๔ߔࠆߣ
ߣ߽ߦ‫ߗߥޔ‬ᄙ᭽ᕈࠍ⏕଻ߒߥߌࠇ߫ߥࠄߥ޿߆ߣ޿߁໧㗴ࠍ‫ޔ‬ၮᧄߦ┙ߜ㄰ߞߡᢎ⢒ߣ⎇ⓥߩਔ஥㕙߆ࠄ⺰ߓߡߺࠆ‫ޕ‬
)ˎȫ઀ܰ࿅ࡄ‫ݪ‬৒͈࡛ે ℄⃿ᄢቇℂቇㇱࠍ଀ߦߣߞߡ⃻⁁ࠍ⚫੺ߔࠆ‫ޕ‬ᴺੱൻએ೨ߪ‛ℂߩታ㛎♽ߩᢎຬߪ‫ޔ‬1
ੱᒰߚࠅߩนಣಽ੍▚ߪ‫ޔ‬ᢎ⢒⎇ⓥ⾌⚂ 50㨪70 ਁ౞㧗ᣏ⾌ 17 ਁ౞ߣ޿߁੍▚⁁ᴫߢ޽ߞߚ߇‫ޔ‬H15 ᐕᐲߦߪ‫ޔ‬ᢎ⢒
⎇ⓥ⾌ߣᣏ⾌ࠍวࠊߖߡ 33 ਁ౞ߣ޿߁⁁ᘒߦ߹ߢỗᷫߒߡ޿ࠆ‫ޕ‬ᢥ⑼⋭ߩ⑼ቇᛛⴚ⊕ᦠߦࠃࠇ߫‫ޔ‬࿖౏⑳┙ᄢቇߩℂ
ቇㇱߩ 1 ੱᒰߚࠅᐔဋ⎇ⓥ⾌㧔ㆇ༡⾌੤ઃ㊄㧗ᄖㇱ⾗㊄㧗ੱઙ⾌㧕ߪ‫ ⚂ޔ‬3,200 ਁ౞‫ߦࠇߘޔ‬ኻߒߡ℄⃿ᄢቇℂቇㇱ
ߪ⚂㧝500 ਁ౞‫ޕ‬ታߦඨ㗵ߦ߽෸߫ߥ޿‫⎇ޕ‬ⓥ᧦ઙߩᩰᏅߪᱧὼߣߒߡ޿ࠆ‫ోޕ‬࿖ߩ࿾ᣇᄢቇߪᄢหዊ⇣‫⁁▚੍ޔ‬ᘒߦ
ᄢᏅߪή޿‫ޕ‬
)ˏȫఉအ଻͈‫ږ‬༗̶͉̈́ຈါ̥
Ԙ㧔ࠕࠞ࠺ࡒ࠶ࠢߥᯏ㑐ߣߒߡߩ⎇ⓥ㧕ቴⷰ⊛ᄖ⇇߇ᄙ᭽ߢ޽ࠆ‫⎇ޕ‬ⓥߪᔅὼ⊛ߦᄙ᭽ߢ޽ࠆᔅⷐ߇޽ࠆ‫⹺ޕ‬⍮ߐࠇߚ
㗔ၞߛߌ߇⥝๧޽ࠅଔ୯ߩ޽ࠆኻ⽎ߢߪή޿‫ޕ‬
ԙ㧔࿾⃿ࠍ⎕უߒដߌߡ޿ࠆੱ㘃⊛┙႐㧕࿾⃿ߣ౒ሽߒߡᜬ⛯ߢ߈ࠆੱ㘃␠ળߩߚ߼ߦߪ‫ޔ‬࿾⃿ߩ․ᕈࠍㆬᛯ⊛ߦขᝥ
ߒߡߩߢߪ⎕✋ߪ⚻㛎ᷣߺ‫ޕ‬዁᧪߇ᚑࠅ┙ߚߥ޿‫ޕ‬
Ԛ㧔ᣣᧄߩ⑼ቇᛛⴚ᡽╷⊛⺖㗴㧕዁᧪ߩ᳓Ḱࠍ⛽ᜬߒߚߩߥࠄ‫ޔ‬ᄙ᭽ᕈߪᔅ㗇‫ޕ‬
ԛ㧔ࠕࠞ࠺ࡒ࠶ࠢߥᢎ⢒㧕୘ࠍዅ㊀ߒੱᩰࠍ⹺߼ࠆߥࠄ߫‫ޔ‬᳃ᣖߩ⥄᳿ᮭࠍዅ㊀ߒᐔ๺ࠍᦸ߻ߥࠄ߫‫ޔ‬ᄙ᭽ᕈߩዅ㊀ߪ
ᄢ೨ឭ‫⌀ޕ‬ℂߪోੱ㘃࡮ਁ࿖ߩ౒ㅢၮ⋚‫⌀ޕ‬ℂߩቴⷰ⊛ᛠីࠍ‫ޕ‬
Ԝ㧔ో㕙⊛ੱᩰߣ⁛┙ߒߚ⎇ⓥ⠪ߩ⢒ᚑ㧕⍮ߩ༡ߺࠍⴕ޿‫ޔ‬ᔃべࠆቇ⠌ࠍታᣉߔࠆߩ߇⁛┙ߒߚ᳃ਥੱࠍ⢒ᚑߔࠆၮᧄ‫ޕ‬
㧔ၮᧄ⊛ੱᮭߩਛり㧕⑼ቇ⊛ߢᱜ⏕ߥ⍮⼂ࠍᜬߜ‫ޔ‬ቴⷰ⊛ߦ‛੐ࠍ⷗⍮ߔࠆߎߣ߇ߢ߈‫⥄ޔ‬ಽߢ್ᢿߢ߈‫⥄ޔ‬ಽߢ⚿
⺰ࠍ಴ߔߎߣߩߢ߈ࠆੱ㑆‫ޕ‬㧔⁛┙ߒߚ⎇ⓥ⠪ߩⷐ⚛㧕⥄↱ߥ⊒ᗐ‫⎇ޔ‬ⓥኻ⽎ߩㆬቯ‫⎇ޔ‬ⓥᚻᲑߩ᳿ቯ‫࠲࡯࠺ޔ‬෼㓸
ߣ⸃ᨆ⢻ജ‫✚ޔ‬ว⊛⠨ኤߩߢ߈ࠆ⎇ⓥ⠪‫ޔߪࠄࠇߎޕ‬஍ߞߚଔ୯ⷰߩ߽ߣߢߪ᳿ߒߡ⢒ᚑߢ߈ߥ޿‫ޕ‬
)ːȫͺ΃ΟηΛ·̈́ၛા́Ȃఉအ଻ͬఄਹ̧́ͥບ‫͈ث‬࿒ͬ ⑼ቇᛛⴚ᡽╷⊛ߦᄙ᭽ᕈࠍ㊀ⷞߔࠆ⹏ଔၮḰࠍ‫ޕ‬
㧔ㆊᐲߩ⾗㊄㓸ਛߪ⹏ଔߩ⋡ߩ஍ࠅࠍ␜ߔ߽ߩ㧕
)ˑȫಎ઀ܰ࿅ࡄ‫ݪ‬৪͉ুࡨ৽ಫͬ㧦⁛⥄ᕈߩ⏕⹺‫⎇ޔ‬ⓥߩᗧ⟵ߩౣ⏕⹺‫ޔ‬ᄙ᭽ᕈࠍᡰ߃ࠆ᳇᭎ࠍ‫ޕ‬ᖱႎ✂ࠍ⏕଻ߒߡ‫ޔ‬
⎇ⓥදജࠍ‫ޕ‬ᨵエ⚵❱ߩ㓸࿅⊛౒ห⎇ⓥࡀ࠶࠻ࡢ࡯ࠢࠍ‫ޕ‬
)˒ȫࡄ‫ݪ‬঩߄Ȉఉ̨̳͂ࠧཋ͈ଵୃ㧔ผ਄ⓨ೨ߩᄢડᬺߩᄢ߽߁ߌߣࡢ࡯ࠠࡦࠣࡊ࡯ࠕ㧕
‫ߩࡀࠞޟ‬㓸ਛߢࡁ࡯ࡌ࡞⾨߇↢
߹ࠇࠆ߆‫ޟޠ‬ᄙ᭽ᕈ⎕უߒߡੱ㘃߇↢߈ᑧ߮ࠄࠇࠆ߆‫ޠ‬
Ԙࠦࡒࡘ࠾࠹ࠖ࡯ߪ⥄ਥ⊛ߥ⎇ⓥ✂ࠍ‫್ߦࠢ࠶ࡒ࠺ࠞࠕߪࠢ࠶ࡒ࠺ࠞࠕޕ‬ᢿߢ߈ࠆ┙႐ߩ⏕଻ࠍ‫ޕ‬ԙㆡಾߥၮ⋚⚻⾌ߩ
ၮḰ⊛㈩Ꮣࠍ‫ޕ‬Ԛㆡಾߥ┹੎⊛⾗㊄ߩ૕೙ࠍ‫ޕ‬
79
PD ࿚ఴ̞͈̾̀ͅͺϋΉȜΠ಺औࠫ‫͈ض‬༭࣬!
ฬᄢℂ ᐔፉ
ᄢ
⍴ᦼ⎇ⓥળߦవ┙ߞߡ‫⎇ޔ‬ⓥળߦ߅ߌࠆ⼏⺰ߩ᧚ᢱߣߔࠆߚ߼ߦᣂᣥߩ‛ᕈࠣ࡞࡯ࡊ੐ോዪߦࠃߞߡ PD ໧㗴ߦ㑐ߔࠆ
ࠕࡦࠤ࡯࠻⺞ᩏ߇ⴕࠊࠇߚ‫‛ޕ‬ᕈࠣ࡞࡯ࡊߦዻߔࠆ⚂ 190 ࠣ࡞࡯ࡊߦࠕࡦࠤ࡯࠻ࠍ߅㗿޿ߒ‫ޔ‬49 ࠣ࡞࡯ࡊ߆ࠄ࿁╵ࠍ޿
ߚߛ޿ߚ‫ޕ‬
ࠕࡦࠤ࡯࠻ߢߪ‫ޔ‬
㧜㧚ㆊ෰ 5 ᐕ㑆ߩඳ჻ቇ૏ขᓧੱᢙ
㧝㧚ㆊ෰ 5 ᐕ㑆ߩ PD 㓹↪ߩ᦭ή
PD 㓹↪ߩ⚻㛎߇޽ࠆ႐ว‫⾗ ޔ‬㊄‫ޔ‬㓹↪ᦼ㑆‫ޔ‬PD ߣߒߡߩ㓹↪࿁ᢙ
㓹↪⚳ੌᓟߩㅴ〝
㧞㧚PD ᔕ൐⠪޽ࠆ޿ߪ୥⵬⠪ߩੱᢙߥߤ
㧟㧚PD ໧㗴ߦߟ޿ߡߩ⥄↱࿁╵
㧠㧚㧔⑼ቇᛛⴚᝄ⥝⺞ᩏ⾌ߦࠃࠆ㧕࠹࠾ࡘࠕ࠻࡜࠶ࠢ೙ᐲߦߟ޿ߡߩᗧ⷗ࠍ⺞ᩏߒߚ‫ޕ‬
࿁╵ߒߡ޿ߚߛ޿ߚ 49 ࠣ࡞࡯ࡊߢߪ‫ޔ‬㧡ᐕ㑆ߦ 134 ฬ߇ቇ૏ࠍขᓧߒ‫ޔ‬106 ฬߩ PD ࠍ㓹↪ߒߡ޿ࠆ‫ޕ‬1 ฬએ਄ߩ
PD ࠍ㓹↪ߒߚߎߣ߇޽ࠆࠣ࡞࡯ࡊߪ㧠㧥ࠣ࡞࡯ࡊਛ‫ޔ‬36 ࠣ࡞࡯ࡊߢ޽ߞߚ‫ޕ‬
㓹↪⾗㊄ߦߟ޿ߡߪ‫ޔ‬ቇᝄߦࠃࠆ PD㧔․೎⎇ⓥຬ㧕ߩᢙ߇ㄭᐕᷫዋߒߡ߅ࠅ‫⵬ࠍࠇߘޔ‬లߔࠆࠃ߁ߦ⑼⎇⾌ߦࠃࠆ㓹
↪߇Ⴧടߒߡ޿ࠆ‫ޔߚ߹ޕ‬ฦᄢቇ࡮ᯏ㑐ߩ⚻⾌㧔ㆇ༡੤ઃ㊄ߥߤ㧕ߦࠃࠆ㓹↪߽߆ߥࠅߩഀวࠍභ߼ߡ޿ࠆ‫ޕ‬PD ߩ✚ᢙ
ߪߎߎ㧡ᐕ㑆ߢߪ㗼⪺ߥᄌൻߪߥ޿㧔න⺞ߦჇടߒߡ޿ࠆߎߣߪߥ޿㧕‫ޕ‬
㓹↪⚳ੌᓟߩㅴ〝߿౏൐ߩ㓙ߩᔕ൐⠪ᢙߥߤ߆ࠄߪ‫‛ޔ‬ᕈࠣ࡞࡯ࡊߦ߅޿ߡ PD ߇߈ࠊ߼ߡㆊ೾ߣߥࠅෂᯏ⊛ߥ⁁ᴫߦ
޽ࠆߎߣࠍ␜ߔ⚿ᨐߪᓧࠄࠇߡ޿ߥ޿‫ߩઁޔߪߊࠄߘ߅ޕ‬ಽ㊁ߦᲧߴࠇ߫߹ߛ໧㗴ߪෂᯏ⊛ߢߪߥ޿น⢻ᕈ߇㜞޿‫߆ߒޕ‬
ߒߥ߇ࠄ‫࠲࡯࠺ߩ࠻࡯ࠤࡦࠕߩߎޔ‬ᢙ߇ዋߥߊో૕ߩ⁁ᴫࠍᱜ⏕ߦ෻ᤋߒߚ߽ߩߣߥߞߡ޿ߥ޿น⢻ᕈ߽޽ࠆ‫ޕ‬੐ታ‫⥄ޔ‬
↱࿁╵ᰣߦነߖࠄࠇߚᗧ⷗ߦߪᷓೞߥ PD ໧㗴ߩሽ࿷ࠍᜰ៰ߔࠆ߽ߩ߇ᄙ߆ߞߚ‫ޕ‬ቇ૏ขᓧ⠪޽ࠆ޿ߪ PD ߦኻߒߡࠕࠞ
࠺ࡒ࠶ࠢࡐࠬ࠻એᄖߩዞ⡯ࠍଦߔߚ߼ߩⅣႺ૞ࠅ㧔ࡀ࠶࠻ࡢ࡯ࠢ૞ࠅ㧕ࠍㅴ߼ࠆߴ߈ߢ޽ࠆߣ޿߁ᗧ⷗߇ᄙ߆ߞߚ‫ޕ‬
੹࿁ߩ⺞ᩏߢߪ‫ޔ‬㓹↪ߐࠇߚ PD ߦߟ޿ߡߩߺߩ⺞ᩏࠍⴕߞߚ߇‫੹ޔ‬ᓟฦࠣ࡞࡯ࡊߦ߅ߌࠆቇ૏ขᓧ⠪ߩㅴ〝⺞ᩏߥߤ
߽ⴕ޿‫ࠅࠃޔ‬ᐢ▸࿐ߩ PD ໧㗴ߩታᘒߩᛠីߦദ߼ࠆᔅⷐ߽޽ࠆ߆߽ߒࠇߥ޿‫⺞࠻࡯ࠤࡦࠕޔ߅ߥޕ‬ᩏ⚿ᨐߩ⹦⚦ߪ‫‛ޔ‬
ᕈࠣ࡞࡯ࡊ࠙ࠚࡉࡍ࡯ࠫߦឝタߔࠆ੍ቯߢ޽ࠆ‫ޕ‬
‫੅ڠ‬݈͈ٛ‫ܥ‬ෝ͂࿨‫ڬ‬
᧲ᄢ࡮Ꮏ චୖ ᅢ♿
ᣂ૕೙ቇⴚળ⼏㧔SCJ㧕ߩᯏ⢻ߣᓎഀߦߟ޿ߡㅀߴ‫‛ޔ‬ᕈࠦࡒࡘ࠾࠹ࠖߣߩㅪ៤ߩ޽ࠅᣇࠍ⼏⺰޿ߚߛ޿ߚ‫ޕ‬
2005 ᐕ㧔╙ 19 ᦼ㧕ߦ SCJ ߪჿ᣿‫ޟ‬ᣣᧄߩ⑼ቇᛛⴚ᡽╷ߩⷐ⺼‫ޔߒ⴫⊒ࠍޠ‬2050 ᐕ߹ߢߩ‫ޔ‬࿖ኅ⊛⋡ᮡߦኻߔࠆ⑼ቇ
ᛛⴚ᡽╷ߩ⽸₂ߣ࿷ࠅᣇߦߟ޿ߡߩ⠨߃ࠍ⴫᣿ߒߚ‫ ⃻ޕ‬20 ᦼ SCJ ߩࡒ࠶࡚ࠪࡦߪߎࠇࠍౕ⃻ൻߔࠆߎߣ߆ࠄᆎ߹ࠆ‫ޕ‬
SCJ ߪ╙ 20 ᦼߦ޿ߚࠆߣ߈ߦ‫ޔ‬ળຬ೙ᐲᡷ㕟ࠍⴕ޿‫ޔ‬SCJ ⥄ࠄળຬ㧔⚂ 210 ฬ㧕ࠍㆬ⠨ߒ‫ ߩߎޔߚ߹ޔ‬1 ᐕࠍ߆ߌߡ‫ޔ‬
ળຬߣ╬૏ߩ┙႐ߢᵴേࠍⴕ߁ㅪ៤ળຬ㧔⚂ 1900 ฬ㧕ࠍ co-optation ߩ⠨߃ߢㆬ಴ߒߚ‫ޔߚ߹ޕ‬ㇱ߽ 7 ㇱ೙߆ࠄ 3 ㇱ೙
߳ᄌᦝ‫ޔ‬೽ળ㐳ࠍ 3 ฬߣߒߡ‫ޔ‬ᐙ੐ળ߽⸳⟎ߒߡ‫ޔ‬ክ⼏࡮ᗧᕁ᳿ቯߩㄦㅦൻࠍ࿑ߞߡ޿ࠆ‫ޕ‬
‛ℂቇᆔຬળ㧔╙ 3 ㇱߦ⸳⟎㧕ߩ㑐ଥߔࠆᏱ⸳ಽ⑼ળߣߒߡ‫‛ޟޔ‬ᕈ㨯৻⥸‫ޠ‬
‫ޔ‬㨇⚛☸ሶ㨯ේሶᩭ㨉‫ޔ‬
‫ޟ‬ᄤᢥ࡮ቝቮ‫‛ޠ‬ℂቇ
ฦಽ⑼ળ‫߮ࠃ߅ޔ‬࿖㓙ኻᔕߣߒߡ IUPAP‫ޔ‬IAU ಽ⑼ળ߇޽ࠆ‫‛ޕ‬ᕈࠦࡒࡘ࠾࠹ࠖߣߩ㑐ㅪ߇ᷓ޿ߩߪ‫ޠ৻࡮‛ޟޔ‬ಽ⑼
ળ㧔દ⮮ᣧ⧣ᆔຬ㐳‫ޔ‬ኅᐙ੐‫ޔ‬੖␹ᐙ੐‫ޔ‬චୖ೽ᆔຬ㐳㧕ߢ޽ࠅ‫ޔ‬30 ฬߩㅪ៤ળຬߩหಽ⑼ળ߳ߩෳടࠍᓧߡ‫ߩᦼ੹ޔ‬
ਥߚࠆክ⼏⺖㗴ߣߒߡ‫ޟޔ‬ၮ⋚⊛⎇ⓥᵴേߦ⾗ߔࠆ‛࡮৻⎇ⓥ᜚ὐߩᢛ஻᭴ᗐߦߟ޿ߡ‫ࠍޠ‬ᬌ⸛ߒᆎ߼ߡ޿ࠆ‫ޕ‬
SCJ ߩᗧᕁ⴫಴ߩ଀ߣߒߡ‫ ╙ޔ‬19 ᦼߦ߅ߌࠆჿ᣿‫ޟ‬ᣂಽ㊁ഃᚑߦ⾗ߔࠆశ⑼ቇ⎇ⓥߩᒝൻߣߘߩᣇ╷ߦߟ޿ߡ‫߿ޠ‬
ⷐᦸ‫ޟ‬࿖┙ᄢቇߩᄢቇᴺੱൻߦߣ߽ߥ߁ᄢቇ㒝⟎ో࿖౒ห೑↪⎇ⓥᚲ࡮ᣉ⸳ߩ⺖㗴‫ࠍޠ‬ขࠅ਄ߍ‫ޔ‬SCJ ߆ࠄߩᗧᕁ⴫಴
ߩ㊀ⷐᕈߣ੐ᓟലᨐㅊ〔ߩᔅⷐᕈࠍㅀߴߚ‫ޕ‬
ߎߩὐߦ㑐ߒߡ‫ޔ‬ᓥ᧪ߩ‛⎇ㅪ߆ࠄߩႎ๔‫‛ޟ‬ᕈ⎇ⓥ᜚ὐᢛ஻⸘↹‫ޠ‬㧔1996㧕ߣ‫‛ޟ‬ᕈ⎇ⓥ᜚ὐᢛ஻⸘↹ߩౕ૕ൻߦะ
ߌߡ‫ޠ‬
㧔2000㧕ߩ੐ᓟലᨐ‫߮ࠃ߅ޔ‬ฦ⒳ߩᢎ⢒⎇ⓥ᜚ὐᒻᚑࡊࡠࠣ࡜ࡓ߇ㅴⴕߔࠆߥ߆ߢߩߎߩ⸘↹ߩ⃻࿷ߩᗧ⟵ߣᔅⷐ
80
ᕈߦߟ޿ߡ‫ޔ‬ળ႐߆ࠄߩᗧ⷗ࠍુߞߚ‫ޕ‬
߹ߚ‫ޔ‬ฦ⒳ߩⷐᦸࠍ฽߻ᗧᔒ⴫಴ߩ೨ឭߣߒߡ‫ޔ‬ᓥ᧪ߩ‛ᕈ⑼ቇၮ␆⎇ⓥߩࠗࡁࡌ࡯࡚ࠪࡦߦኻߔࠆ࿶ୟ⊛ነਈߩታ❣
ࠍᒝ⺞ߒ‫ޔ‬10 ᐕߩవ㧔╙ 3㨮4 ᦼ⑼ቇᛛⴚၮᧄ⸘↹㧕߹ߢࠍዷᦸߒߚ‫‛ޔ‬ᕈ࡮৻⥸‛ℂቇߩၮ⋚⊛⎇ⓥߦࠃࠆ promise ࠍ‫ޔ‬
ᢛℂߒߡಽࠅ߿ߔߊឭ␜ߔࠆߎߣ߇ᔅⷐߣߩ‫ࠍ⷗⑳ޔ‬ㅀߴߚ‫ޕ‬
‫੅ڠ‬݈ٛ͂໤଻΋ηνΣΞͻȜ஼༷̥ͣ!
ȝ!‫੅ڠ‬݈͈ٛႤঃͬ੆͓࡛̀ેͬࣉ̢ͥ!ȝ!
㕍ጊቇ㒮ᄢቇℂᎿቇㇱ ⑺శ
⚐
ᦨㄭ‫ޔ‬ቇⴚળ⼏߇ᄢ߈ߊ᭽ᄌࠊࠅߒ‫ޔ‬20 ᦼ߆ࠄߪቇⴚળ⼏ળຬߩㆬ⠨ᣇᴺߦ㑐ߒߡ co-optation ߣ޿߁ᣇᴺ߇ขࠄࠇ‫ޔ‬ᒻ
ᑼ⊛ߦߪਅㇱ⚵❱㧔ᚒ‫‛ߪߢࡊ࡯࡞ࠣߩޘ‬ℂቇ⎇ⓥㅪ⛊ળ㧕ߣߩ㑐ଥ߇ߥߊߥࠆߎߣߦ᳿ቯߒߚ‫ߦࠇߘޕ‬ᔕߓߡ੹࿁‫ޔ‬
ᚒ‫ߩ❱⚵ߪޘ‬ᑪߡ⋥ߒࠍ૛௾ߥߊߐࠇߡ޿ࠆ‫ޕ‬
ߎߎߢቇⴚળ⼏ߩᱧผࠍᝄࠅ㄰ߞߡ‫ޔ‬ቇⴚળ⼏ߩᨐߚߒߡ߈ߚᓎഀ߅ࠃ߮੹ᓟߩዷᦸߦߟ޿ߡㅀߴߚ‫ޕ‬
඾ུ‫੅ڠ‬݈͈ٛႤঃ!
⦟ߊ⍮ࠄࠇߡ޿ࠆࠃ߁ߦ‫ޔ‬ᣣᧄቇⴚળ⼏ߪ 1949 ᐕ 1 ᦬ߦ⊒⿷ߒߚ‫ޕ‬ળຬߪᬺ❣ߦࠃߞߡ⹺ቯߐࠇ‫⋥ޔ‬ធㆬ᜼ߦࠃࠅㆬ
߫ࠇ‫✚ޔ‬ℂᄢ⤿߇છ๮ߔࠆߣ޿߁ᒻߦߥߞߡ޿ߚ‫ ߒ߆ߒޕ‬1950 ᐕ 11 ᦬‫ࠆࠊ⚳߇ᦼ৻╙ޔ‬㗃߆ࠄ᡽ᐭߩቇⴚળ⼏ߦኻߔ
ࠆᘒᐲ߇ᓸᅱߦᄌൻߒߡ߈ߚ‫⇟৻ߩߘޕ‬ᄢ߈ߥේ࿃ߪ‫ޔ‬ᚢᓟߩỗേᦼߩᓟߦ↢ߓߚ਎⺰ߩಽⵚߢ޽ࠆ‫ߩߘޔߒ߆ߒޕ‬㑆‫ޔ‬
ቇⴚળ⼏߇ᨐߚߒߚᓎഀ߽ᄢ߈ߊ‫ޔ‬ᄙߊߩ⎇ⓥᚲ߇⸳┙ߐࠇߚ㧔⴫ 1 ෳᾖ㧕‫ޕ‬
ߎߩࠃ߁ߥ਎⺰ߩಽⵚࠍฃߌߡቇⴚળ⼏ߦ᡽ᴦ⊛ߥേ߈߇ᒝ߹ࠅ‫ޔ‬ᩭ౓ེᑄ⛘ࠕࡇ࡯࡞‫ޔ‬ᄢቇ▤ℂᴺߦ෻ኻߔࠆჿ᣿‫ޔ‬
ේሶജ⎇ⓥ 3 ේೣ╬߇ᛂߜ಴ߐࠇߚ‫ߦࠇߎޕ‬ኻߒߡ᡽ᐭߪ‫ޔ‬1967 ᐕቇⴚክ⼏ળࠍ⊒⿷ߐߖ‫ޔ‬ቇⴚળ⼏ߩ੍▚ߪᄢ᏷ߦᷫ
ዋߔࠆߦ⥋ߞߚ‫ޔߦࠄߐޕ‬1983 ᐕቇⴚળ⼏ᴺ߇ᡷᱜߐࠇ‫ޔ‬ቇⴚળ⼏ߩળຬߪቇදળ߇ផ⮈ߒ‫ޔ‬ቇⴚળ⼏߇ㆬ߱ߣ޿߁ࠃ
߁ߦᡷ߼ࠄࠇߚ‫ ߦࠄߐޕ‬2004 ᐕ 4 ᦬ߦ⥋ߞߡ‫ޔ‬ቇⴚળ⼏ᴺࠍᡷᱜߔࠆᴺᓞ߇ᚑ┙ߒ‫ޔ‬2005 ᐕ 10 ᦬߆ࠄ‫ޔ‬ቇⴚળ⼏ߩ╙
20 ᦼ߇⊒⿷ߒߚ‫ߣࠆࠃߦࠇߘޕ‬ળຬߪ‫ޔ‬ቢోߦ co-optation ߦࠃࠅㆬ಴ߐࠇ‫ޔ‬1. ቇⴚળ⼏ߪ㒸ᖱ࿅૕ߢߪߥߊ‫࡯ࡆࡠޔ‬
ࠗࡦࠣߪߒߥ޿‫ޕ‬2. ․ቯߩ⎇ⓥಽ㊁ߦ᳓ࠍᒁ߆ߥ޿‫ޕ‬3. ಽ㊁೎ᆔຬળߪߥߊߔ╬ߩ᳿ቯ߇ߥߐࠇߚ‫ޕ‬
એ਄߇◲නߥቇⴚળ⼏ߩᱧผߢ޽ࠆ‫ߪߢߎߎޕ‬໧㗴ឭ⿠ߣߒߡ‫ޔ‬
1㧚‛ᕈᆔຬળߣߒߡቇⴚળ⼏ߦ૗ࠍᦼᓙߔࠆ߆
2㧚ߤߩࠃ߁ߦቇⴚળ⼏ߣ‛ᕈᆔຬળࠍ❬ߍࠆ߆
ߣ޿߁ᄢ߈ߥ໧㗴߇޽ࠆ‫ߩࠄࠇߎޕ‬໧㗴ߦߟ޿ߡߪ‫ޔ‬ᄙߊߩ⼏⺰߇ߥߐࠇߚ߇‫৻ᦺ৻ޔ‬ᄕߦ⸃᳿ߢ߈ࠆ໧㗴ߢ߽ߥ޿ߩߢ‫ޔ‬
ߎࠇࠄߩ໧㗴ࠍᜬ⛯⊛ߦ⸛⺰ߒ‫੹ޔ‬ᓟߩᚒ‫ߩޘ‬ᵴേߦᦼᓙߒߚ޿‫ޕ‬
⴫ 㪈㩷 ⎇ⓥᚲ⸳┙䈱଀䇮൘๔䈫ታ⃻䈱ᐕ㩷
൘๔
ታ⃻
൘๔
ታ⃻
ේሶᩭ⎇ⓥᚲ
ࡊ࡜࠭ࡑ‛ℂ⎇
᡼኿✢ၮ␆කቇ⎇
ቝቮ⑼ቇ⎇ⓥᚲ
ቝቮ⥶ⓨ⎇
‛ᕈ⎇ⓥᚲ
ቝቮ⑼ቇ⎇
ᄤ૕‛ℂߩᝄ⥝
ጟጊᄤ૕‛ℂ᷹ⷰᚲ
⚛☸ሶ⎇ⓥᚲ
㜞ࠛࡀ࡞ࠡ࡯⎇
ᶏᵗ✚ว⎇ⓥᚲ
ಽሶ⑼ቇ⎇ⓥᚲ
ᢙℂ⸃ᨆ⎇ⓥᚲ
᡼኿శ✚ว⎇ⓥᚲ
໤଻΋ηνΣΞͻ̱͈͂̀໤଻տ֥͈ٛ࿨‫!ڬ‬
ฬᄢ࡮ℂ
૒⮮ ᱜବ
ᣂ↢ቇⴚળ⼏ߩ⺀↢ߦ઻ߞߡ‛ᕈᆔຬળߣቇⴚળ⼏ߣߩߟߥ߇ࠅ߇ᶖ߃‫‛ޔ‬ᕈᆔຬળߪ㕖౏ᑼߩ࿅૕ߣߥߞߚ‫ࠃߩߎޕ‬
߁ߥ⁁ᴫਅߢ੹ᓟ‫‛߇ࠇߎޔ‬ᕈ⎇ⓥ⠪ࠦࡒࡘ࠾࠹ࠖߩᗧᕁࠍ⑼ቇⴕ᡽ߦ෻ᤋߐߖߡ޿ߊߚ߼ߦߪ‫ߩߘޔ‬ᗧᕁࠍᱜߒߊ㓸⚂
81
ߒ‫ޔ‬ቭ⵾⚵❱ߣߪ⇣ߥߞߚ┙႐߆ࠄߩᑪ⸳⊛ᗧ⷗ࠍ࠲ࠗࡓ࡝࡯ߦឭ಴ߢ߈ࠆᘒ൓ࠍᏱᤨᢛ߃ߡ߅ߊߎߣ߇㊀ⷐߢ޽ࠆ‫ߘޕ‬
ߩߚ߼ߦ‫ޔ‬ᓥ᧪ߩ‛ᕈ⊖ੱᆔຬળࠍ‛ᕈᆔຬળߦᡷ⚵ߒߡⷙ⚂ࠍ೙ቯߒ‫‛ޔ‬ᕈಽ㊁ߩ⊒ዷߩߚ߼ߩᗧ⷗⺞ᢛ߿ߘࠇߦၮߠ
޿ߚឭ⸒ࠍⴕ߁ળߣߒߚ‫ౕޕ‬૕⊛ߦߪ‫‛ޔ‬ᕈಽ㊁ߩ⎇ⓥ⠪㑆ߩㅪ⛊‫ޔ‬ᗧ⷗੤឵‫ޔ‬㓸⚂‫ޔ‬ឭ⸒‫ޔ‬ฦ⒳⚵❱㧔଀߃߫‫ޔ‬ᣣᧄቇ
ⴚળ⼏㧕ߣߩㅪ⛊‫ోޔ‬࿖౒ห೑↪ᯏ㑐ߩฦ⒳ᆔຬߩផ⮈㧔‛ᕈ⎇౒ห೑↪ᣉ⸳ኾ㐷ᆔຬળᆔຬ‫ੱޔ‬੐ද⼏ળᆔຬ‫ޔ‬੩ᄢၮ
⎇ㆇ༡ᆔຬ‫౒ޔ‬ห೑↪ᆔຬ‫ઁޔ‬㧕‫‛ޔઁߩߘޔ‬ᕈಽ㊁ߩ⊒ዷߦነਈߔࠆᵴേࠍⴕ߅߁ߣߔࠆ߽ߩߢ޽ࠆ‫ޕ‬
‛ᕈᆔຬળߦߪ‛ᕈᆔຬ㐳‫ޔ‬੐ോዪ㧔㐳㧕
‫ޔ‬ᐙ੐ 20 ฬ‫⋙ޔ‬ᩏੱ 2 ฬࠍ߅߈‫ޔ‬ᐙ੐ߪ‛ᕈᆔຬߩㆬ᜼ߢㆬ಴ߐࠇ‛ᕈᆔ
ຬ㐳߅ࠃ߮੐ോዪߣදജߒߡㆇ༡ߦ޽ߚࠆ‫⋙ޕ‬ᩏੱߪ੐ോዪ੤ᦧ㧔3 ᐕߏߣ㧕ߩᰴߩቇળᤨߦ㐿߆ࠇࠆ᜛ᄢ‛ᕈᆔຬળߢ
⋙ᩏႎ๔ࠍⴕ߁‫ޕ‬
ᐔᚑ 18 ᐕ 10 ᦬߆ࠄߩߘࠇࠄߩࡔࡦࡃ࡯ߪᆔຬ㐳㧦ୖᧄ⟵ᄦ‫ޔ‬੐ോዪ㐳㧦 ᧛਄ᵗ৻‫ޔ‬ᐙ੐㧦૒⮮ᱜବ‫ޔ‬㜞⇗ᢅ㇢‫ޔ‬ർ
ጟ⦟㓶‫ޔ‬ᄢ⽾ᖳ⌬‫ޔ‬ᓟ⮮ノቁ‫ޔ‬Ꮒᶏ₵㆏‫ޔ‬ਃቛ๺ᱜ‫⑺ޔ‬శ⚐‫ޔ‬೨Ꮉ⑓ㅢ‫ޔ‬਄↰๺ᄦ‫⑔ޔ‬ጊ⑲ᢅ‫ޔ‬೨㊁ᖝノ‫ޔ‬⍫ࠤፒస㚍‫ޔ‬
ဝ↰⺈‫ޔ‬㋈᧛㗅ਃ‫ޔ‬ችਅ♖ੑ‫ޔ‬ዊ↰၂ቁ‫ޔ‬㜞ᯅ㓉‫ޔ‬᛼ጊቁ‫ޔ‬Ꮉ਄ೣ㓶ߣߥߞߡ޿ࠆ‫ޕ‬
‛ᕈᆔຬળߩ⺖㗴ߪ‫ߩࠖ࠹࠾ࡘࡒࠦޔ‬ᗧᕁߩ㓸⚂ߣ‫ߦࠇߘޔ‬ၮߠ޿ߚⴕേ࡮ឭ⸒ࠍᔅⷐߦᔕߓߡⴕ߁ߎߣߢ‫ౕޔ‬૕⊛ߦ
ߪ଀߃߫એਅߩࠃ߁ߥⷰὐߦኻߔࠆᗧᕁ㓸⚂߿ᘒ൓ᢛ஻߇᳞߼ࠄࠇࠃ߁‫ޕ‬٤┹੎⊛⾗㊄ߩㆡᱜ㈩ಽߦ㑐ߔࠆ‛ᕈ⎇ⓥ⠪ߩ
⠨߃ᣇ‫ޔ‬٤ᄢቇ㒝⟎ߩో࿖౒ห೑↪⎇ⓥᚲߦኻߔࠆᡰេ߿ⷐᦸ‫ޔ‬٤‛ᕈಽ㊁એᄖߩࠦࡒࡘ࠾࠹ࠖߣߩㅪ⛊ᯏ⢻ߩᒻᚑ‫ޔ‬٤
⨲ߩᩮ⚵❱‫ޔ‬ዊⷙᮨࠣ࡞࡯ࡊߦኻߔࠆ⠨ᘦ‫ޔ‬٤ᓥ᧪߆ࠄߩឭ⸒ߦ޽ߞߚ‛ᕈ⎇ⓥ᜚ὐ⸘↹ߦኻߔࠆ੹ᓟߩኻᔕ٤JPSJ ߩ
ᵴᕈൻࠍ⋡ᜰߒߚ‛ᕈࠦࡒࡘ࠾࠹ࠖߣߒߡߩദജ‫ޔ‬٤ᤐߣ⑺ߩ‛ℂቇળߦ߅ߌࠆ⊒⴫ᒻᑼߩᡷༀ‫߫߃ߣߚޔ‬ቇળࡊࡠࠣ࡜
ࡓ✬ᚑ‫ࠅ޽ߩࡓ࠙ࠫࡐࡦࠪޔ‬ᣇ٤ PD ໧㗴߳ߩⓍᭂ⊛ኻᔕ‫ޔ‬ឭ⸒╬‫ޕ‬
੹ᓟ‫‛ޔ‬ᕈᆔຬળ߇๟࿐߆ࠄା㗬ߐࠇߘߩᯏ⢻ࠍᨐߚߒߡ޿ߊߚ߼ߦߪ‫ޔ‬٤‛ᕈ⎇ⓥ⠪ߩᄙߊߦട౉ࠍ๭߮߆ߌ‫ࠦޔ‬
ࡒࡘ࠾࠹ࠖో૕ߩᗧ⷗߇㓸⚂ߢ߈ࠆ⚵❱૕ߣߥࠆߎߣ‫ޔ‬٤‛ᕈ⎇ࠍߪߓ߼ߣߒߚ౒ห೑↪⎇ߩᵴേߦኻߔࠆᡰេ߅ࠃ߮ቇ
ⴚળ⼏ߦኻߔࠆᗧ⷗࡮ⷐᦸ╬ࠍ᦭ല߆ߟᢅㅦߦⴕ߃ࠆᘒ൓૞ࠅࠍᕃࠄߧߎߣ‫⎇ޔ‬ⓥ⾗㊄ߩ㈩ಽ╬ߦ㑐ߒߡ᳿ቯࠍⴕ߁ᯏ㑐
߿ᆔຬળߦ⃻႐ߩჿࠍᱜ⏕ߦવ߃ࠆ㆏╭ࠍ᭴▽ߔࠆߎߣ‫߇╬ޔ‬ᔅⷐߢ‫ߩ߼ߚߩߘޔ‬ቯᦼ⊛ળว߇ᦨ߽㊀ⷐߥ߽ߩߣ⠨߃ࠆ‫ޕ‬
ߘߩ߁߃ߢቇⴚળ⼏╬ߦߪࠦࡒࡘ࠾࠹ࠖߩᗧᕁߩዅ㊀ࠍⷐᦸߔࠆ‫ޕ‬
ߎߩ߶߆‫ޔ‬ᄢቇ㒝⟎ߩో࿖౒ห೑↪⎇ⓥᚲߦኻߒߡߩౕ૕⊛ᡰេ╷߿ⷐᦸ‫⎇ޔ‬ⓥ⾗㊄ߩㆡᱜߥ㈩ಽ‫ޔ‬ዊⷙᮨ⑼ቇߦ㑐ߔ
ࠆ㈩ᘦ‫ޕߚߒ⺰⼏ߡ޿ߟߦ╬ޔ‬
໤଻տ֥͈ٛ‫خ‬ෝ଻!
᧲ർᄢ࡮ℂ ୖᧄ ⟵ᄦ
‛ᕈᆔຬળᆔຬ㐳
ቇⴚળ⼏ߩౣ✬ߦࠃࠅ‫‛ޔ‬ℂቇ⎇ⓥㅪ⛊ળ⼏㧔‛⎇ㅪ㧕ߪ 2005 ᐕ⑺ߦᑄᱛߐࠇߚ‫⎇‛ޔߡߞ઻ߦࠇߎޕ‬ㅪߩਅㇱ⚵❱
ߣߒߡߩ‛ᕈ⊖ੱᆔຬળ߽ߘߩᕈᩰࠍᄌൻߐߖߚ‫ޕ‬2006 ᐕ 3 ᦬ߩ‛ℂቇળᐕᰴᄢળߦ߅ߌࠆ᜛ᄢ‛ᕈᆔຬળߢ‫ߩߎޔ‬ᄌ
ൻ߳ߩኻᔕࠍ⼏⺰ߒ‫‛ޔ‬ᕈࠦࡒࡘ࠾࠹ࠖߣߒߡߪ‫⎇ޔ‬ⓥ⠪ߩ⨲ߩᩮ⚵❱ࠍ‫‛ޟ‬ᕈᆔຬળ‫߁޿ߣޠ‬ฬ⒓ߢၮᧄ⊛ߦሽ⛯ߐߖ
ࠆߎߣߦ᳿߼ߚ‫ߩߎޕ‬᳿ቯࠍฃߌߡ‫ޔ‬2006 ᐕ 10 ᦬߆ࠄ᧲ർᄢቇ߇ฬฎደᄢቇ߆ࠄ੐ോዪࠍᒁ߈⛮޿ߢ޿ࠆ‫࡯ࡃࡦࡔޕ‬
ߪୖᧄ⟵ᄦ
ᆔຬ㐳‫᧛ޔ‬਄ᵗ৻
੐ോዪ㐳‫ޔ‬⍹ේ⚐ᄦ‫ޔ‬ጤ૒๺ᤩ
੐ോዪᐙ੐ߢ޽ࠆ‫ޕ‬
‛ᕈࠣ࡞࡯ࡊ߇㑐ਈߒߚਥߥឭ⸒ࠍᝄࠅ㄰ߞߡߺࠆߣએਅߩࠃ߁ߥ߽ߩ߇޽ࠆ‫ޕ‬
㧖 ‛ᕈ⎇ⓥ᜚ὐᢛ஻⸘↹
1996‫ޔ‬2000㧦ቇⴚળ⼏ኻᄖႎ๔‫⎇‛ޔ‬ㅪႎ๔‫ޕ‬
㧖 ⎇ⓥಽ㊁ࠍᮮᢿߔࠆṛ࿷ဳ౒ห⎇ⓥផㅴ
2005㧦‛⎇ㅪႎ๔‫ޔ‬2007㧦ၮ␆‛ℂቇ⎇ⓥᚲߩ᭎▚ⷐ᳞‫ޕ‬
㧖 JPSJ ߩ⊒ዷߦะߌߡ
2005.1㧦‛ᕈࠣ࡞࡯ࡊ᦭ᔒߩჿ᣿‫ޕ‬
ߎࠇࠄߩឭ⸒ߪ৻ቯߩᚑᨐࠍ޽ߍߡ޿ࠆߩߢ‫ޔ‬ᒁ߈⛯߈ᔅⷐߥ⁁ᴫߦኻߒߡࠦࡒࡘ࠾࠹ࠖߣߒߡߩឭ⸒ࠍߒߡⴕ߈ߚ޿‫ޕ‬
ᦨㄭߩ࿖ౝᄖᖱ൓ߩ౒ㅢߔࠆ㊀ⷐߥᄌൻߣߒߡ‫⎇ޔ‬ⓥ߆ࠄᢎ⢒߳ߩ੍▚ᛩ౉ࠪࡈ࠻߇᜼ߍࠄࠇࠆ‫☨߫߃଀ޕ‬࿖ߪࠕࠫࠕ
ߩบ㗡ߣ⥄࿖ߩᢎ⢒᳓Ḱૐਅߦኻߒߡෂᯏᗵࠍᒝ߼ߡ޿ࠆ߇‫☨ޔ‬࿖⑼ቇࠕࠞ࠺ࡒ࡯ߩ 2006 ᐕ 2 ᦬ߩឭ⸒ᦠߩߥ߆ߢߪ‫ޔ‬
┹੎⋧ᚻߣߒߡਛ࿖ߣࠗࡦ࠼߇➅ࠅ㄰ߒ⸒෸ߐࠇߡ޿ࠆߩߦኻߒߡ‫ޔ‬ᣣᧄ߳ߩ⸒෸ߪ߶ߣࠎߤߥ޿‫ޕ‬ᣣᧄߪᦨᣧᒝജߥ┹
੎⋧ᚻߣߪ⷗ࠄࠇߡ޿ߥ޿ߎߣࠍ⥄ⷡߒ‫⌀ޔ‬೶ߦౣ⥝ࠍ࿑ࠆߴ߈ߢ޽ࠆ‫৻ޕ‬ᣇ‫ޔ‬࿖┙ᄢቇᴺੱൻߦࠃࠆᄌൻߣߒߡ‛ᕈࠦ
ࡒࡘ࠾࠹ࠖߦߣߞߡ㊀ⷐߥߎߣߪ‫ోߕ߹ޔ‬࿖౒ห೑↪⎇ⓥᯏ㑐ߩ೙ᐲᄌᦝ߇޽ࠆ‫ޕ‬ᄢቇߩ౒ห೑↪⎇ⓥᚲߩᄌൻߪ‫ޔ‬
COE ↳⺧ߥߤߢห৻ᄢቇߩઁㇱዪߣㅪ៤ߔࠆᔅⷐߦࠃࠅ‫ޔ‬ᚲዻᄢቇ߳ߩᏫዻᕈᒝൻߣߒߡ߽⃻ࠇߡ޿ࠆ‫ޕ‬ᴺੱൻߪߘߩ
ઁߦ߽‫┹ޔ‬੎⊛ⅣႺߩᩰᲑߩᒝ߹ࠅࠍ߽ߚࠄߒߡ޿ࠆ‫޿઻ߦࠇߎޕ‬ᴺੱ㑆ߩ೑⋉⋧෻‫ޔ‬ታ㛎ᣉ⸳ᢛ஻⁁ᴫߩᩰᏅ᜛ᄢ‫ޔ‬࿾
ᣇᄢቇߩ෩ߒ޿⁁ᴫߥߤ߇↢ߺ಴ߐࠇߡ޿ࠆ‫ࠍࠄࠇߎޕ‬൮᜝ߔࠆᩮḮ⊛ߥ໧㗴ߣߒߡ㜞╬ᢎ⢒ߩో૕⊛ะ਄ࠍߤ߁࿑ࠆ߆
߇޽ࠆ‫‛ޕ‬ᕈᆔຬળߩછോߣߒߡߪ‫ߩߎޔ‬ታᖱࠍⷞ㊁ߦ౉ࠇߚ਄ߢߩࠦࡒࡘ࠾࠹ࠖߩᗧ⷗㓸⚂ߣⴕേ߇ᦨ߽ၮᧄ⊛ߢ޽ࠆ‫ޕ‬
ߘߩߚ߼ߦߪ‫‛ޔ‬ᕈ⎇ⓥߩ዁᧪௝ߦ㑐ߔࠆ޽ࠆ⒟ᐲߩ౒᦭ൻ߇ᔅⷐߢ޽ࠈ߁‫౒ޕ‬ห೑↪⎇ⓥᚲ߳ࠦࡒ࠶࠻ߔࠆ⋥ធߩ
82
ࡄࠗࡊߪ‫ޔ‬ᆔຬߩផ⮈ߢ޽ࠆ‫⎇‛ߤࠎߣ߶ޔߪߡ޿ߟߦࡦ࡚ࠪࠫࡐߩߎޕ‬ㅪߦផ⮈ࠍଐ㗬ߐࠇߚㇱಽࠍᒁ߈⛮޿ߢ߅ࠅ‫ޔ‬
190 ⒟ᐲ޽ࠆࠣ࡞࡯ࡊߩᛩ␿ߦࠃߞߡⵍផ⮈⠪ࠍ᳿߼ߡ޿ࠆ‫ߩ⨲ޕ‬ᩮߩᗧ⷗ࠍ෻ᤋߔࠆᢙዋߥ޿ᯏળߢ޽ࠆ߇‫ߪ⁁⃻ޔ‬
ᛩ␿✚ᢙ߇ዋߥߔ߉ࠆ‫ޔߚ߹ޕ‬ᄢဳᣉ⸳ߩ೑↪ᡷༀߦࠦࡒ࠶࠻ߔࠆߎߣ‫ޔ‬ฦ⒳ⷙᮨߩࡃ࡜ࡦࠬࠍ↢߆ߒߚ⎇ⓥᢎ⢒૕೙᭴
▽ߦነਈߔࠆߎߣ‫‛ޔ‬ℂቇળߩᐕળ࡮ಽ⑼ળߩᡷ㕟߳ߩදജ‫ޔ‬JPSJ ߩᒝൻ࡮⊒ዷ߳ߩදജ‫⧯ޔ‬ᚻ⎇ⓥ⠪ߩ⢒ᚑߦࠦࡒ࠶
࠻ߔࠆߎߣߥߤ‫ޔ‬ኻಣߔߴ߈⺖㗴ߪጊⓍߒߡ޿ࠆ‫ޕ‬
‛ᕈᆔຬળߪ‛ᕈ‛ℂቇో⥸ࠍࠞࡃ࡯ߔࠆߎߣࠍ⋡ᮡߦߒߡ޿ࠆ߇‫ޔߪߢ⁁⃻ޔ‬ಽ㊁ߦ஍ࠅ߇ߥ޿ߣߪ޿߃ߥ޿‫ޔߚ߹ޕ‬
ࠃࠅኾ㐷⊛ߥࠦࡒࡘ࠾࠹ࠖߣߩㅪ៤߽࿑ߞߡ޿ߊߴ߈ߢ޽ࠆ‫ߥ߁ࠃߩߎޕ‬ᕡᏱ⊛ᵴേߩዷ㐿ߪ‫ޔ‬ᐕળߣಽ⑼ળߦ߅ߌࠆ᜛
ᄢ‛ᕈᆔຬળߛߌߢߪਇ⿷ߢ޽ࠆ‫੹ޕ‬࿁ߩࠃ߁ߥ⎇ⓥળߩ㐿௅߽฽߼‫ޔ‬੐ോዪߣᐙ੐ 20 ੱߦࠃࠆ࡝࡯࠳࡯ࠪ࠶ࡊࠍ޽ࠆ
⒟ᐲ⊒ើߒߡⴕേߒߡ޿߈ߚ޿‫ޔ߃޿ߪߣޕ‬૗ಽߦ߽㕖ജߥࠁ߃‫ߩࠖ࠹࠾ࡘࡒࠦޔ‬ᒝജߥࠨࡐ࡯࠻ࠍ߅㗿޿ߔࠆߒߛ޿ߢ
޽ࠆ‫ޕ‬
໤ၑ‫ڠ‬ٛఱ͈ٛ໤଻ႀ֖อນͅ‫̳ͥ۾‬٨‫!ڟ‬
᧲ᄢ࡮✚ว 㣮ఽፉ ⺈৻
2006 ᐕ 9 ᦬ 23 ᣣ26 ᣣߦජ⪲ᄢቇߢ㐿߆ࠇߚᣣᧄ‛ℂቇળ 2006 ᐕ⑺ቄᄢળߢታᣉߒߚࠕࡦࠤ࡯࠻⚿ᨐߩ᭎⇛ࠍႎ๔
ߔࠆ‫⺞࠻࡯ࠤࡦࠕޕ‬ᩏߩ⋡⊛ߪ‫ޔ‬㗔ၞ೙߇⊒⿷એ᧪㧣ᐕߩ㑆‫‛ޔߢߩ޿ߥ޿ߡࠇߐߥߪߒ⋥⷗ߥ⊛⾰ᧄޔ‬ᕈ㑐ଥߩ㗔ၞ೙
ࠍਛᔃߣߒߡᄢળ㐿௅ᴺߦ㑐ߔࠆળຬߩᗧ⷗ࠍ⡞ߊߎߣߢ޽ࠆ‫ޕ‬
࿁╵ᢙߪ 953 ߢ޽ࠆ߇ 71%ߪᐕ㦂 40 ᱦઍ߹ߢߩੱߩ࿁╵ߢ޽ࠆ‫⚿࠻࡯ࠤࡦࠕޕ‬ᨐࠍ৻⸒ߢ⸒߃߫‫ߕ߹ߕ߹ޔ‬ḩ⿷ᐲ߇
㜞޿‫ޔߪࠇߎޕ‬Ყセ⊛⧯ᚻߩ࿁╵߇ᄙᢙࠍභ߼ߚ߆ࠄ߆߽ߒࠇߥ޿‫ޕ‬ᵈ⋡ߔߴ߈ߪ 50 ᱦઍߩ࿁╵ߢ޽ࠅ‫ߩઁޔ‬ᐕ㦂ጀߦ
Ყߴߡḩ⿷ᐲ߇ૐ޿‫ޕ‬࿖㓙ળ⼏ߩ಴Ꮸ࿁ᢙ߿᜗ᓙ⻠Ṷߩ⚻㛎߇⼾ንߛ߆ࠄߢ޽ࠈ߁‫ޕ‬એਅߦ㊀ⷐߣᕁࠊࠇࠆ੐㗄ߦߟ޿ߡ‫ޔ‬
⚿ᨐߩ᭎⇛ࠍㅀߴࠆ‫ޕ‬
㧔⹦⚦ߪ‛ℂቇળ⹹ߦឝタ੍ቯ㧕‫ޕ‬
1ࠪࡦࡐࠫ࠙ࡓߦߟ޿ߡ㧦ࠪࡦࡐࠫ࠙ࡓߪ⢐ቯ⊛ߦᝒ߃ࠄࠇߡ޿ࠆ߇‫ޔ‬୘೎ᗧ⷗ߣߒߡߪ‫ࡑ࡯࠹ޔ‬᳿ቯ߇቟ᤃߢ޽ࠆߎ
ߣߦኻߔࠆᛕ್߽޽ࠆ‫ޕ‬
2㗔ၞ೙ߦߟ޿ߡ㧦50 ᱦઍߩ෻ᔕߪ⋡┙ߞߡ߅ࠅ‫⇟ߩ⁁⃻ޔ‬ภ೙ߢߪߥߊㆡᒰߥฬ⒓ࠍߟߌࠆߎߣࠍᏗᦸߔࠆᗧ⷗߇ᄙ
޿‫ޕ‬ᢙߣߒߡߪᄙߊߪߥ޿߇‫⸳࠼࡯ࡢ࡯ࠠޔ‬ቯ‫ޔ‬㊀ⶄߥߤߦ㑐ߔࠆਇḩߪ᜼ߍࠄࠇߡ޿ࠆ‫ޕ‬
3㗔ၞวหㆇ༡ߦߟ޿ߡ㧦᭎ߨวหㆇ༡ߦ⢐ቯ⊛ߢ޽ࠆ‫ߚ߹ޕ‬วหࠪࡦࡐࠫ࠙ࡓ╬ࠍㅢߒߡታ㓙ߦวหㆇ༡߇ߢ߈ߡ޿
ࠆߣ޿߁࿁╵߽ᄙ޿‫ޔߒ߆ߒޕ‬ታ㓙ߦㆇ༡਄ߩ㔍ߒߐࠍ⹺⼂ߒߡ޿ࠆੱ߽ዋߥ߆ࠄߕ޿ࠆ‫ޕ‬50 ᱦઍߪߎߎߢ߽෻ᔕ߇
㆑߁‫ޕ‬⢐ቯ⊛ᗧ⷗߇ዋߥߊߥࠅ‫ޔ‬㗔ၞ೙ߩ⿰ᣦߦ෻ߔࠆߣ޿߁ᗧ⷗߇Ⴧടߒߡ޿ࠆ‫ޕ‬
4㗔ၞ࡟ࡆࡘ࡯࠮࠶࡚ࠪࡦߦߟ޿ߡ㧦᭎ߨᅢᗧ⊛ߦฃߌขࠄࠇߡ޿ࠆ‫ޕ‬หᤨߦળ႐ߩ໧㗴ࠍ᜼ߍߡ޿ࠆੱ߇ዋߥ߆ࠄߕ
޿ࠆ‫⸳ߩߎޕ‬໧ߢߪ 20 ᱦઍߩᦼᓙᗵߩ㜞ߐ߇⋡┙ߟ‫ޕ‬
5ࠝ࡯ࠟ࠽ࠗ࠭࠼࠮࠶࡚ࠪࡦߦߟ޿ߡ㧦ߎࠇ߇૗ߢ޽ࠆ߆߇ℂ⸃ߐࠇߥ߆ߞߚࠃ߁ߢ޽ࠆ‫ޕ‬⢐ቯ⊛ᗧ⷗ߪ޽ࠆ߇‫ޔ‬หᤨ
ߦࠪࡦࡐࠫ࠙ࡓ߇ߘࠇߦኻᔕߒߡ޿ࠆ߆ࠄ⃻⁁ߢࠃ޿‫⻠⥸৻ޔ‬Ṷߩ⾰߇ਅ߇ࠆߣ޿߁ ᔨߩᜰ៰߽޽ࠆ‫ޕ‬
੹࿁ߩࠕࡦࠤ࡯࠻ߩ⚿ᨐ‫ޔ‬᭎ߨ⃻⁁ߩቇળߦḩ⿷ߒߡ޿ࠆ଻቞⊛ߥෳട⠪௝߇ᶋ߆߮਄߇ߞߡߊࠆ‫ޔߒ߆ߒޕ‬50 ᱦઍ
ߩ෻ᔕߪ․⇣⊛ߢ޽ࠅ‫ޔ‬ቇળෳട⠪ߩᐔဋ⊛ᗧ⷗ߣ⇣ߥߞߡ޿ࠆ‫⃻ޕ‬ታߩᄙᢙᵷෳട⠪ߩᏗᦸࠍḩߚߔߎߣߣ‫ޔ‬వዉᕈ‫ޔ‬
ᜰዉᕈࠍ⊒ើߔࠆߎߣߣߩࡃ࡜ࡦࠬᗵⷡ߇᳞߼ࠄࠇࠆ‫ޕ‬
KQTK ͈࡛ે͂඾ུ͈໤଻ࡄ‫!ݪ‬
ᣣᧄ‛ℂቇળ ᣁᵄ ᒄⴕ
ߎߩ⻠Ṷߢߪ JPSJ ߩᦨㄭߩᢙᐕ㑆ߩ⁁ᴫࠍ࡟ࡆࡘ࡯ߔࠆ‫ޕ‬
JPSJ ߪቇⴚ⹹ߩ಴ ‫ޔ‬㑛⺒ߥߤߩᒻᘒ߇㔚ሶ⊛ᚻᲑߦ⒖ⴕߒߡ޿ࠆ⁁ᴫࠍ〯߹߃‫ޔ‬ᕆࡇ࠶࠴ߢᡷ㕟ࠍㅴ߼ߚ‫ޕ‬
1ഃೀภ߆ࠄߩో⺰ᢥߩ㔚ሶ ߩቢᚑ㧔2005 ᐕ 7 ᦬㧕
2㑛⺒ࠍ㔚ሶࡔ࡯࡞ߣ࠙ࠚࡉਛᔃߦߒߚ‫ޕ‬
3㑛⺒ㆊ⒟ߦᏱߦᵈᗧߒ‫⺰޿ࠃޔ‬ᢥࠍᣧߊ಴ 4✬㓸ᆔຬળડ↹ߩ‫ޟ‬᜗ᓙ⺰ᢥ‫․ޟޠ‬㓸‫ࠍޠ‬಴ 83
5‫ޟ‬ᵈ⋡⺰ᢥ‫ޟ߿ࠕࠖ࠺ࡔࠍޠ‬ળ⹹‫ߦޠ‬㈩ା
ߥߤߩദജࠍߒߡ޿ࠆ‫⚿ߩߘޕ‬ᨐ‫ޔ‬㔚ሶ ⺰ᢥߩ࠳࠙ࡦࡠ࡯࠼ᢙߪ㗅⺞ߦિ߮ߡ޿ࠆ‫ޕ‬JPSJ ߦߪ⃻࿷ࠃࠅ߽ߕߞߣ෩ߒ
޿ⅣႺߢఝࠇߚ⎇ⓥࠍߒߡ߈ߚవヘߚߜߩᚑᨐ߇⹣߹ߞߡ޿ࠆߩߢ޽ࠆ‫ޕ‬
ߒ߆ߒ‫⺰ޔ‬ᢥߩᛩⓂᢙߪિ߮ߡ޿ߥ޿‫ߪࠇߎޕ‬૗ࠍᗧ๧ߔࠆߩߢ޽ࠈ߁߆㧫JPSJ ߩᡷ㕟߇⿷ࠅߥ޿ߎߣࠍ␜ߒߡ޿ࠆ
ߩ߆㧫ߘࠇߣ߽‫⃻ޔ‬ઍߩᣣᧄߩ⎇ⓥ⠪ߩᆫ൓ߦ໧㗴߇޽ࠆߩ߆㧫
಼;ρϋ‫ࣣا‬໤ࡄ‫ض଼͂ે࡛͈ݪ‬Ȫ3114.ȫ!
ࡔঊႁ‫ࢹܥ‬Ȇ൐ཤఱ߄ࡄఱ஄͈‫ވ‬൳ࡄ‫!ݪ‬
ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ వ┵ၮ␆⎇ⓥ࠮ࡦ࠲࡯ ⧐⾐ ⧐▸
Th, Pa, U, ߣ⛯ߊࠕࠢ࠴ࡁࠗ࠼ర⚛ߪ‫ޔ‬5f Ზ߇ḩߚߐࠇߡⴕߊ♽೉ߢ޽ࠆ߇‫ߩߘޔ‬᜼േߪ 4f ᲖࠍᜬߟᏗ࿯㘃ߣߪᄢ߈
ߊ⇣ߥߞߡ޿ࠆ‫ޕ‬ਅ࿑ߪ‫ޔ‬Ꮧ࿯㘃෸߮ࠕࠢ࠴ࡁࠗ࠼න૕㊄ዻߩᐔဋේሶඨᓘߢ޽ࠆ‫ޕ‬Ꮧ࿯㘃ߢߪ޿ߊߟ߆ߩ଀ᄖࠍ㒰޿ߡ
㧟ଔ߇቟ቯߢ޽ࠅ‫ޔ‬ේሶ⇟ภߣߣ߽ߦඨᓘߪࠁߞߊࠅᷫዋߔࠆ‫ޕ‬Th ߆ࠄ Np ߹ߢߩシࠕࠢ࠴ࡁࠗ࠼ߢߪ㔚ሶᢙࠍჇ߿ߔ
ߣߣ߽ߦᕆỗߦඨᓘ߇ᷫዋߒ‫৻ޔ‬ᣇ Am એ㒠ߩ㊀ࠕࠢ࠴ࡁࠗ࠼ߢߪᏗ࿯㘃ߣห᭽ߩᄢ߈ߐߦᚯࠆ‫ߪߣߎߩߎޕ‬シࠕࠢ࠴
ࡁࠗ࠼ߩ 5f 㔚ሶߪㆉᱧ⁁ᘒߦ޽ࠅ‫ޔ‬Pu ࠍ⚻ߡ Am ߦ⥋ߞߡዪ࿷ߦᚯࠆ‫ߤ߁ࠂߜޕࠆ޿ߡࠇߐ㉼⸃ߣޔ‬ਛ㑆ߦ޽ࠆ Pu න
૕㊄ዻߪ᷷ᐲ࡮࿶ജߣߣ߽ߦᄢ߈ߥᾲ⤘ᒛࠍ઻߁ᄙᢙߩ᭴ㅧ⋧ォ⒖ࠍ➅ࠅ㄰ߔ⇣Ᏹߥ㊄ዻߣߒߡ⍮ࠄࠇߡ޿ࠆ‫ᦨߚ߹ޕ‬ㄭ
ߢߪ PuCoGa5 ߩ‫ޟ‬㜞᷷‫⿥ޠ‬વዉ߇⊒⷗ߐࠇ‫ࡦ࡜࠙⿥ޔ‬ൻว‛߳ߩ㑐ᔃ߇㜞߹ߞߡ޿ࠆ‫ޕ‬
৻ᣇ‫࠼ࠗࡁ࠴ࠢࠕޔ‬ర⚛ߪේሶജߣኒធߦ㑐ଥߒ‫ޔ‬ᩭΆᢱ࡮
RI ߣߒߡߩⷙ೙ࠍฃߌߡ޿ࠆߚ߼‫ޔ‬Np એ㒠ߩ⿥࠙࡜ࡦర⚛
ߪ㒢ࠄࠇߚᣉ⸳ߩߺߢߒ߆ขࠅᛒ߁ߎߣߪߢ߈ߥ޿‫ޕ‬ේሶജᯏ
᭴ߣ᧲ർᄢ㊄⎇ߪࡑࠢࡠ㊂ߩ⿥࠙࡜ࡦర⚛ࠍขࠅᛒ߃ࠆᣉ⸳ߢ
޽ࠅ‫ޔ‬ਔ⠪ߩදജߦࠃࠅ‫ޔ‬࿖ౝߢߪೋ߼ߡߩࠕࠢ࠴ࡁࠗ࠼ૐ᷷
‛ᕈ⎇ⓥ߇ 2003 ᐕߦࠬ࠲࡯࠻ߒߚ‫ ߦߢ߹ࠇߎޕ‬PuRhGa5 ߩ
⇣ᣇ⊛⿥વዉ߿ NpO2 ߩᄙᭂሶ⒎ᐨߩ⎇ⓥߥߤᄙߊߩᚑᨐ߇਄
߇ࠅ⎇ⓥߪ㗅⺞ߦㅴዷߒߡ޿ࠆ‫ޔߚ߹ޕ‬ᄢ㒋ᄢቇ‫ޔ‬SPring8
߿ේሶജᯏ᭴ JRR-3 ߢ߽‫ࠍࡦ࡜࠙⿥ޔ‬ᛒ߁૕೙߇ᕆㅦߦᢛ޿‫ޔ‬
ᄢᵞ࿾඙ߩᄖߢ߽ዋ㊂ߩ Np ࠍ૶ߞߚታ㛎߇น⢻ߦߥߞߡ߈ߡ
޿ࠆ‫ޕ‬ේሶജࠍขࠅᏎߊ␠ળᖱ൓߇෩ߒߊߥࠆਛߢ‫߁ࠃߩߎޔ‬
ߥၮ␆⎇ⓥߪ߽ߪ߿න⁛ߩᣉ⸳ߢߩታ⃻ߪ㔍ߒ޿‫ޕ‬ේሶജᯏ
࿑㩷 Ꮧ࿯㘃෸䈶䉝䉪䉼䊉䉟䊄න૕㊄ዻ䈱ේሶඨᓘ䇯 Los Alamos
᭴࡮㊄⎇ߩኒធߥㅪ៤ߪ߽ߜࠈࠎ‫ޔ‬ౝᄖߩℂ⸃ߣදജ߇੹ᓟߩ
Science 26 (2000)
⎇ⓥ⛮⛯ߦਇนᰳߢ޽ࠆ‫ޕ‬
ఱ஄ঔ୭಼͂;ρϋ‫ࣣا‬໤ࡄ‫!ݪ‬
஠࣭‫ވ‬൳၌ဥঔ୭̱͈͂̀൐ཤఱ‫ऺ௺߄ڠ‬ၳࡄ‫ݪ‬ਫ਼ၾঊ΀ΥσΆȜऺၳ‫!ڠش‬
࣭षࡄ‫ݪ‬ΓϋΗ)ఱ஄ΓϋΗȜ*͈࡛ે̞̾̀ͅ!
!
᧲ർᄢቇ㊄ዻ᧚ᢱ⎇ⓥᚲ
྾┑ ᮸↵
᧲ർᄢቇ㊄ዻ᧚ᢱ⎇ⓥᚲ㒝ዻ㊂ሶࠛࡀ࡞ࠡ࡯᧚ᢱ࿖㓙⎇ⓥ࠮ࡦ࠲࡯
ᄢᵞ࠮ࡦ࠲࡯ߪ⃻ JAEA ᄢᵞߦ⸳⟎ߐࠇߚ᧚ᢱ
⹜㛎Ἱ
JMTRߩᄢቇ㑐ㅪߩో࿖౒ห೑↪ࠍ߅਎⹤ߔࠆߎߣࠍ⋡⊛ߣߒߡᤘ๺ 44 ᐕߦ JAEA ᄢᵞᢝ࿾ౝߦ⸳⟎ߐࠇߚ‫ޕ‬
ᄢቇ‫⎇ߩ┙౏ޔ‬ⓥᯏ㑐ߩᢎ⡯ຬ(৻ㇱ⎇ⓥදജ⠪ߣߒߡ᳃㑆߆ࠄߩᔕ൐ߦࠃࠆ౒ห⎇ⓥຬߣฃ⸤⎇ⓥຬ)߅ࠃ߮ᄢቇ㒮ቇ↢
߇‫ޔ‬ේሶജ᧚ᢱ߿ࠕࠢ࠴ࡁࠗ࠼ర⚛ߦ㑐ߔࠆ⁛ഃ⊛࡮వ┵⊛ߥቇⴚ⎇ⓥࠍㆀⴕߔࠆߚ߼ߩ࿖ౝ໑৻ߩ౒ห೑↪࠮ࡦ࠲࡯ߢ
޽ࠆ‫ޕ‬㊄⎇ේሶജ㑐ㅪㇱ㐷ߣߩኒធߥㅪ៤ߩਅߦ‫⎇ޔ‬ⓥㆀⴕߦᔅⷐߥࡂ࡯࠼ߣ࠰ࡈ࠻ࠍ㐿⊒࡮ᢛ஻ߒឭଏߒߡ޿ࠆ‫߃଀ޕ‬
߫‫ޔ‬ේሶἹߩᾖ኿᷷ᐲ࡮ਛᕈሶࡈ࡞ࠛࡦࠬࠍ㜞♖ᐲߦ೙ᓮน⢻ߥᄙᲑᄙಽഀࠠࡖࡊ࠮࡞ࠍ↪޿ߚ᧚ᢱᾖ኿ᛛⴚ‫ޔ‬Ἱౝߘߩ
႐⸘ⵝᛛⴚ‫ޔ‬ㅘㆊ㔚ሶ㗼ᓸ㏜ߢ߽ⷰኤ࿎㔍ߥᭂᓸዊᰳ㒱ࠍ⹏ଔߔࠆߚ߼ߩ࠽ࡁಽᨆ⹏ଔᛛⴚ‫࠼ࠗࡁ࠴ࠢࠕߥ⦟⚐ޔ‬න⚿᥏
84
ߩ⢒ᚑߣ‛ᕈ⹏ଔᛛⴚߥߤߪ਎⇇ᦨవ┵ߩᛛⴚߣߒߡ࿖ߩౝᄖߢ㜞ߊ⹏ଔߐࠇߡ޿ࠆ‫ߩ࠻ࡈ࠰ߣ࠼࡯ࡂߥ߁ࠃߩߎޕ‬ᢛ
஻࡮㜞ᐲൻߦࠃࠆ೑↪Ꮧᦸ⠪ᢙߩჇട‫߮ࠃ߅ޔ‬ᔕ൐⾗ᩰ⠪ߩㄭ㓞ߩේሶജᯏ᭴߿‛᧚ᯏ᭴߳ߩ᜛ల╬ߦࠃࠅ‫౒ޔ‬ห೑↪⠪
ᢙߪᐔᚑ 12 ᐕᐲ߹ߢߩ⚂ 2000 ੱ࡮ᣣ߆ࠄߐࠄߦჇടߒ‫ ߦߊߣޔ‬16‫ޔ‬17 ᐕᐲߪ 3200 ੱ࡮ᣣߣㆊ෰ᦨ㜞ߩᢙሼࠍ⸥㍳ߒ
ߚ‫౒ߥ߁ࠃߩߎޕ‬ห೑↪ߢᓧࠄࠇߚ⁛ഃ⊛࡮వ┵⊛ߥ⎇ⓥᚑᨐߩႎ๔ߩߚ߼ߦᲤᐕ 2 ᦬ᧃ߹ߢߦ⎇ⓥ⚻ㆊႎ๔ᦠࠍឭ಴
ߒߡ߽ࠄ޿‫ߩߘߚ߹ޔ‬ᚑᨐࠍ〯߹߃ߡߩᰴᐕᐲ⎇ⓥឭ᩺ࠍⴕ߁႐ߣߒߡᲤᐕ 8 ᦬ਅᣨߦ⎇ⓥળࠍ㐿௅ߒߡ޿ࠆ‫౒ޕ‬ห೑
↪౏൐ߪ߶߷Ფᐕ 11-12 ᦬ߦ߆ߌߡⴕࠊࠇࠆ‫ޕ‬
ᧄ࠮ࡦ࠲࡯߇ᜂ߁ో࿖౒ห೑↪ߩಽ㊁ߪ‫ޔ‬ේሶἹ‫ޔ‬᡼኿ᕈห૏ర⚛ࠍ೑↪ߒߚ․ᓽ⊛ߥ⎇ⓥಽ㊁ߢ޽ࠅ‫ޔ‬೑↪⠪ߩᄙߊ
ߪ․ቯߩⶄᢙ⎇ⓥಽ㊁ߦಽ㘃ߔࠆߎߣ߇ߢ߈ࠆ‫ߩࠇߙࠇߘޕ‬ಽ㊁ߦ߅޿ߡ‫ߪ࡯࠲ࡦ࠮ᧄޔ‬࿖ౝߦ߅ߌࠆ⚿▵ὐ⊛ߥᯏ⢻ࠍ
ᨐߚߒߡ߅ࠅ‫ޔ‬ฦಽ㊁ߢవዉ⊛ߥᓎഀࠍᨐߚߒߡ߈ߡ޿ࠆ‫․ޕ‬ቯߩ⎇ⓥಽ㊁ߦߟ޿ߡ‫౒ߩ࡯࠲ࡦ࠮ᧄޔ‬ห೑↪⠪ߪ࿖ౝߩ
ᄢቇ㑐ㅪ‫ޔ‬࿖┙⎇ⓥᯏ㑐㑐ㅪߩ⎇ⓥ⚵❱ࠍ߶߷✂⟜ߔࠆᒻߣߥߞߡ޿ࠆ‫ޕ‬୘‫⎇ߩޘ‬ⓥ⠪‫ޔ‬ᄢቇⷙᮨߩዊဳߩ⎇ⓥ⚵❱߆ࠄ
ߪో૕௝ࠍᛠីߒߦߊ޿ᄢဳ⸳஻⟲‫ⶄߩࠄࠇߘ߮ࠃ߅ޔ‬㔀ߥ▤ℂᯏ᭴ߣ‫ޔ‬᏷ᐢ޿ಽᢔࠍᜬߟᄢቇߩ୘‫⎇ߩޘ‬ⓥ⥝๧ߣࠍ᦭
ᯏ⊛ߦ⚿߮ߟߌ‫ޔ‬ᄢቇߦ߅ߌࠆ․ᓽ⊛ߥ⎇ⓥࠍផㅴߔࠆߩ߇ᧄ࠮ࡦ࠲࡯ߩਥⷐᬺോߢ޽ࠆ‫ࡁ࠽ޔࡏ࡜࠻࠶ࡎޕ‬᭴ㅧ⸃ᨆ⸳
஻⟲ߥߤߩ࿕᦭ߩ․ᓽ⊛ߥ⸳஻⟲
ࡂ࡯࠼࠙ࠛࠕߣ‫ޔ‬㐳ᐕߦࠊߚࠅၭࠊࠇߚ JAEA ߣߩੱ㑆㑐ଥ‫ޔ‬ା㗬㑐ଥ
࠰ࡈ࠻࠙ࠛ
ࠕ߇ߎߩ࿎㔍ߥਥⷐᬺോㆀⴕߩⷐߢ޽ࠅᧄ࠮ࡦ࠲࡯ߩ⹶ࠆ․ᓽߢ޽ࠆ‫ޕ‬
ઍ⴫⊛ߥ⎇ⓥಽ㊁ߣߒߡߪ
a. シ᳓Ἱ᭴ㅧ᧚ᢱߦ߅ߌࠆ៊்⹏ଔ
b. ᩭⲢวἹ᧚ᢱࠍ฽߻ᰴ਎ઍේሶജࠪࠬ࠹ࡓ᧚ᢱߦ߅ߌࠆᾖ኿ലᨐ
c. ࠕࠢ࠴࠽ࠗ࠼‛ᕈቇ
d. ࠕࠢ࠴࠽ࠗ࠼ࡃ࠶ࠢࠛࡦ࠼ൻቇ
e. ห૏ర⚛ߦࠃࠆᐕઍ᷹ቯ
ߥߤ߇᜼ߍࠄࠇࠆ‫ޕ‬
85
໤଻ࡄ‫ݪ‬ਫ਼౴დٛ
඾শȇijııķ ා IJı ࠮ ijĶ ඾ĩକĪġ ࡿࢃ ĵ শȡĶ শġ
ાਫ਼ȇ໤଻ࡄ‫ݪ‬ਫ਼ུ‫ ܁‬ķ ‫ٴ‬ġ ఱ࣒݅৒ĩłķĴijĪġ
࣒঍ȇુষġ ࢤ֚ġ
ġ ġ ġ ĩ൐‫ނ‬ఱ‫ڠ‬ġ ໤଻ࡄ‫ݪ‬ਫ਼ȫġ
ఴ࿒ȇ२‫ڒڙ‬ঊࠏ͈ΑάϋΥζΞͻΛ·௖ġ
ါকȇġ
ਛㄞߚߜߦࠃߞߡ⊒⷗ߐࠇߚ NiGa2S4 ߪ‫ޔ‬Weiss ᷷ᐲ߇-80K ߢ޽ࠆ߇‫ޔ‬1.8K ߩૐ᷷߹ߢ⏛᳇㐳〒㔌⒎ᐨࠍ␜ߐߥ޿‫ޕ‬
ߣߎࠈ߇‫ޔ‬Ყᾲ߿Ꮺ⏛₸ߩታ㛎࠺࡯࠲ߪ෻ᒝ⏛ᕈ⒎ᐨ⁁ᘒߦ㘃ૃߒߚᝄࠆ⥰޿ࠍ␜ߔ‫ޕ‬
ߎࠇࠄߩታ㛎⚿ᨐߩᄙߊ߇‫⁁ࠢ࠶ࠖ࠹ࡑࡀࡦࡇࠬޔ‬ᘒߦࠃߞߡ⺑᣿ߢ߈ࠆߎߣࠍឭ໒ߒߚ߇‫ޔ‬ℂ⺰ߩ⹦⚦ࠍ⚫੺ߔࠆ‫ޕ‬
ߐࠄߦ‫ᦨޔ‬ㄭ⸘▚ߒߡ޿ࠆࠬࡇࡦࡀࡑ࠹ࠖ࠶ࠢ⁁ᘒߩ⏛႐ലᨐ߿ࠬࡇࡦ࠳ࠗ࠽ࡒ࠶ࠢࠬߦ㑐ߔࠆ⚿ᨐߦߟ޿ߡ߽ㅀߴࠆ‫ޕ‬
ġ
ġ
඾শȇijııķ ා IJı ࠮ Ĵı ඾ĩ࠮Īġ ࡿࢃ Ĵ শȡĵ শġ
ાਫ਼ȇ໤଻ࡄ‫ݪ‬ਫ਼ུ‫ ܁‬ķ ‫ٴ‬ġ ఱ࣒݅৒ĩłķĴijĪġ
࣒঍ȇőųŰŧįġőįġʼnįġŎįġŷŢůġōŰŰŴťųŦŤũŵġ
ġ ġ ġ ĩŖůŪŷŦųŴŪŵźġŰŧġňųŰůŪůŨŦůĭġŕũŦġŏŦŵũŦųŭŢůťŴȫġ
ఴ࿒ȇōŰŸġťŪŮŦůŴŪŰůŢŭŪŵźġŪůġŵųŢůŴŪŵŪŰůġŮŦŵŢŭġŰŹŪťŦŴįġ
ါকȇġ ġ
The transition metal oxides display an impressive variety in their physical properties, originating from the interplay between crystal field and hund's rule couplings in combination with the interactions with and between the
charge, lattice, spin, and orbital degrees of freedom. Famous examples are the cuprate high temperature superconductors and mixed valence compounds like magnetite and many vanadates. Charge ordering phenomena, low dimensional quantum magnetism, and superconductivity are but a few of the intriguing phenomena observed in the
transition metal oxides. This presentation will highlight some specific examples, focusing on the charge ordering and
non-linear charge transport in beta-sodiumvanadate, and the unusual spin-Peierls route in the titaniumoxyhalides.
඾শȇijııķ ා IJIJ ࠮ ij ඾ĩ࿐Īġ ࡿࢃ ĵ শȡĶ শġ
ાਫ਼ȇ໤଻ࡄ‫ݪ‬ਫ਼ུ‫ ܁‬ķ ‫ٴ‬ġ ఱ࣒݅৒ĩłķĴijĪġ
࣒঍ȇőųŰŧįġŎŢųŵŪůġŘŰŭŧġ
ġ ġ ġ ĩŇųŦŪŦġŖůŪŷŦųŴŪŵäŵġŃŦųŭŪůġŊůŴŵŪŵŶŵġŧüųġņŹűŦųŪŮŦůŵŢŭġűũźŴŪŬȫġ
ఴ࿒ȇŇŦŮŵŰŴŦŤŰůťġŵŪŮŦĮųŦŴŰŭŷŦťġűũŰŵŰŦŮŪŴŴŪŰůġŴŵŶťŪŦŴġŰŧġŦŭŦŤŵųŰůġťźůŢŮŪŤŴġŢůťġŤŰũŦųŦůŵġűũŰůŰůŴġŪůġŴŰŭŪťŴġ
ါকȇġ ġ
Many properties of solids (e. g. the electrical conductivity) are governed by elementary excitations and relaxation
due to electron-electron or electron-phonon scattering. The dynamics of these processes occur on a femtosecond (fs)
time scale and can be probed directly by time-resolved photoemission spectroscopy. In our experiments the time evolution of the electron distribution function following optical excitation (50 fs, 1.5 eV) is monitored by 6 eV fs laser
pulses. This provides access to both occupied and unoccupied states around the Fermi level [1].
86
This talk addresses recent studies of electron and coherent phonon dynamics in several materials exhibiting different aspects of electronic correlation. For the ferromagnetic Gd(0001) surface the ultrafast drop of the spin polarization observed by magneto-optics is attributed electron-magnon scattering [2].
In the Mott insulator TaS2 electronic excitation induces an ultrafast insulator to metal transition and subsequently pronounced oscillations of the spectral function due to a coherent phonon mode [3].
Finally, first results of electron cooling in a high Tc superconductor (BiSCO) will be discussed.
඾শȇijııķ ා IJij ࠮ ijı ඾ĩକĪġ ࡿࢃ ij শȡĴ শġ
ાਫ਼ȇ໤଻ࡄ‫ݪ‬ਫ਼ུ‫ ܁‬ķ ‫ٴ‬ġ ఱ࣒݅৒ĩłķĴijĪġ
࣒঍ȇőųŰŧįġŇŦťŦųŪŤŰġœŰŴŦŪġ
ġ ġ ġ ĩŊŏœŔĮņŎŕĭġŖůŪŷįġťŶġŒŶŦţŦŤĭġŊŔŔőȫġ
ఴ࿒ȇňŦİŔŪ ΰΞυ΀΅Η΅Ώλσ΢Φࢹ௮͈‫ڠا‬ழ଼ζΛάϋΈ͂հ೰଻ġ
ါকȇ
In heteroepitaxy, the strain energy caused by the lattice mismatch competes with kinetic processes to form nanostructured films [1,2].
Ge on Si is a model system with 4.2% lattice mismatch that follows the Stranski-Krastanov growth mode:after
wetting the surface up to a critical thickness of 3-5 monolayers, it is not favorable to grow layer by layer and a
roughening transition to 3D islands is observed. In this system Ge/Si intermixing has been shown to be significant, as
it alters the composition and overall properties of the as grown Quantum Dots (QDs) [3].
Here I describe Ge-Si intermixing from individual islands measured in situ using X-Ray Photoemission Electron
Microscopy [4,5].
Using Ge/Si as a test system, we have developed a technique which allows to map the chemical concentration of
individual Ge(Si) nanostructures with a lateral resolution of 25 nm [6].
Finally, I will describe Scanning Tunnelling Microscopy and Low Energy Electron Microscopy results related to the
positioning and stability of Ge/Si nanostructures [7,8].
References
[1 ]F. Rosei,R. Rosei, Surf. Sci. 500, 395 (2002).
[2] F. Rosei, J. Phys. Cond. Matt. 16, S1373 (2004).
[3] F. Boscherini, G. Capellini, L. Di Gaspare, F. Rosei et al., Appl. Phys. Lett. 76, 682 (2000).
[4] F. Ratto, F. Rosei et al., Appl. Phys. Lett. 84, 4526 (2004).
[5] F. Ratto, F. Rosei et al., J. Appl. Phys. 97, 043516 (2005).
[6] F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. K. Kulkarni, S. Heun and F. Rosei, Small 2, 401 (2006).
[7] A. Sgarlata, P. D. Szkutnik, A. Balzarotti, N. Motta, F. Rosei, Appl. Phys. Lett. 83, 4002 (2003).
[8] F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. K. Kulkarni, S. Heun and F. Rosei, Phys. Rev.
Lett. 96, 096193 (2006).
87
૽! ম! ։! ൲
‒
‒
ⅨᄂᆮᢿᧉሁⅩ
ⅎ‒ ࠯঺ ‣‪ ࠰≜உ ‥• ଐ˄ↀ
≋ᠴ‒ Ꮀ≌‒
൞‒ ‒ ‒ Ӹ‒
৑‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‫‒ޓ‬
Ꮀ‒ ‒ Ӹ‒
ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒
‫ ‒ٻ‬ᢊ‒ ᒍ‒ ʚ‒ ಊᨂ࿢‫ؾ‬ཋࣱᄂᆮᢿᧉ‒
я‒ ‒ ৖‒
ᅕৎ‫ܖྸܖٻ‬ᢿя૙੉↧‒
ᡀ‒ ‫ ‒ם‬ദ‒ ʴ‒ ಊᨂ࿢‫ؾ‬ཋࣱᄂᆮᢿᧉ‒
я‒ ‒ ৖‒
ྺྶ‫ܖྸܖٻ‬ᢿя૙੉↧‒
ⅎ‒ ࠯঺ ‣‪ ࠰ ‣‣ உ≔ଐ˄ↀ
≋੔‒ ဇ≌‒
൞‒ ‒ ‒ Ӹ‒
৑‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‫‒ޓ‬
Ꮀ‒ ‒ Ӹ‒
ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒
᭗‒ ೛‒ ɟ‒ ࣓‒ ૼཋឋᅹ‫ܖ‬ᄂᆮᢿᧉ‒
я‒ ‒ ৖‒
ᐯ໱ᅹ‫ܖ‬ᄂᆮೞನЎ‫܇‬ᅹ‫ܖ‬ᄂᆮ৑я৖ⅺ↸‒
ᢒ‒ ᕲ‒ ‒ ‒ ʶ‒ ᧽‫ޓ‬ɶࣱ‫܇‬ᅹ‫ܖ‬ᄂᆮ଀ᚨ‒
я‒ ‒ ৖‒
ଐஜ‫ܖ‬ᘐਰᐻ˟ཎКᄂᆮՃⅺ↸‒
‫ ‒ޢ‬ஜ‒ ̀ൔӞ‒ ᧽‫ޓ‬ཋឋᚨᚘᚸ̖଀ᚨ‒
я‒ ‒ ৖‒
ྸ҄‫ܖ‬ᄂᆮ৑ؕᄽᅹ‫ܖ‬ཎКᄂᆮՃⅺ↸‒
ⅎ‒ ࠯঺ ‣‪ ࠰ ‣‣ உ ‥• ଐ˄ↀ‒
≋ᠴ‒ Ꮀ≌
൞‒ ‒ ‒ Ӹ‒
৑‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‫‒ޓ‬
ʟ‒ ຓ‒ π‒ ɟ‒ ૼཋឋᅹ‫ܖ‬ᄂᆮᢿᧉ‒
Ꮀ‒ ‒ Ӹ‒
я‒ ‒ ৖‒
ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒
ிʮ߻ಅ‫ܖٻܖٻ‬ᨈྸ߻‫ܖ‬ᄂᆮᅹя૙੉↧‒
ⅎ‒ ࠯঺ ‣‪ ࠰ ‣․ உ≔ଐ˄ↀ‒
≋ᣐፗ੭≌‒
൞‒ ‒ ‒ Ӹ‒
৑‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‫‒ޓ‬
௅‒ ဋ‒ ‒ ‒ ߰‒ ᧽‫៽ޓ‬ᢊ્‫ݧ‬ཋࣱᄂᆮ଀ᚨ‒
Ꮀ‒ ‒ Ӹ‒
я‒ ૙‒ ੉‒
ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒
ிʮ‫ܖٻܖٻ‬ᨈྸ‫ܖ‬ኒᄂᆮᅹя৖ⅺ↸‒
Ⅸʙ‒ Ѧ‒ ᢿⅩ‒
ⅎ‒ ࠯঺ ‣‪ ࠰ ‣․ உ ․‥ ଐ˄ↀ‒
≋˓஖฼ʕ≌‒
൞‒ ‒ ‒ Ӹ‒
৑‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‫‒ޓ‬
᣼‒ ஭‒ ⅺⅹ↺‒ ཋࣱᄂਃ࢘ᛢ‒
Ꮀ‒ ‒ Ӹ‒
ዮ‒ Ѧ‒ ̞‒
ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒
Ꮛδ˞ಅˊՃ≋࠯঺‣‪࠰≕உ․•ଐ⊡≌‒
ⅎ‒ ࠯঺ ‣‪ ࠰ ‣․ உ ․… ଐ˄ↀ‒
≋ᎰѦࣄ࠙≌‒
൞‒ ‒ ‒ Ӹ‒
৑‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‫‒ޓ‬
ສ‒ ဋ‒ Ⴧܱ‫ ‒܇‬ཋࣱᄂਃ࢘ᛢ‒
Ꮀ‒ ‒ Ӹ‒
ዮѦ̞ɼ˓‒
ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒
Ꮛδ˞ಅ≋࠯঺‣‪࠰≕உ‣‫‫‬ଐ⊡≌‒
ⅎ‒ ࠯঺ ‣‫≔࠰ ‫‬உ≔ଐ˄ↀ‒
≋ʙѦᢿϋီѣ≌
൞‒ ‒ ‒ Ӹ‒
৑‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‫‒ޓ‬
ɤ‒ ි‒ Ѩ‒ ദ‒ ʴʙ∝іѦ⇖∑∞⇽‒
88
Ꮀ‒ ‒ Ӹ‒
ʴʙ⇧∞∆‒
ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒
ཋࣱᄂਃ࢘ᛢዮѦ̞ⅺ↸‒
̤! ౶! ͣ! ̵!!
㩷
໤଻ࡄȆࡓ‫ޗ‬૖֥‫ڠࡓ͍ݞ‬୆͈༷ș͒ȂͺΑαΑΠͅ‫ࢫ࠲̳ͥ۾‬௖౴̞̾̀ͅ!
㩷
㩷
᧲੩ᄢቇߢߪ‫ޔ‬ᐔᚑ 18 ᐕ 11 ᦬ 17 ᣣߦᣉ⸳♽ᛛⴚ⡯ຬ߇ਛ⊹⣲ࠍ⊒∝ߒߚߎߣߦߟ޿ߡ‫⸥ޔ‬⠪
⊒⴫ࠍⴕ޿‫ޔ‬૬ߖߡᧄቇߦ߅ߌࠆࠕࠬࡌࠬ࠻ኻ╷ߩታᣉ⁁ᴫࠍႎ๔ߒ‫ޔ‬ㅌ⡯ߒߚᢎ⡯ຬߦߟ޿ߡ߽
․ᱶஜᐽ⸻ᢿ߿଻ஜᜰዉࠍታᣉߔࠆߎߣߣߒߡ߅⍮ࠄߖߒߡ޿ࠆߣߎࠈߢߔ‫ޕ‬㩷
(http://www.u-tokyo.ac.jp/public/public01_181117_j.html)
‛ᕈ⎇ⓥᚲߦ߅޿ߡߪ‫ޔ‬ᨰ⒖ォ೨ߩ౐ᧄᧁᤨઍ㧔ᤘ๺ 35 ᐕ㨪ᐔᚑ 11 ᐕ㧕ߦᣣᏱ⊛ߦࠕࠬࡌࠬ
࠻ࠍ૶↪ߒߡታ㛎ࠍⴕߞߚࠅ‫ޔ‬ᣉ⸳ౝߩᑪ▽⾗᧚߿ታ㛎ᯏེߩਛߦ߽ࠕࠬࡌࠬ࠻߇߆ߥࠅ૶↪ߐࠇ
ߡ޿ߚᤨᦼ߇޽ࠅ߹ߔ‫ޕ‬ਛ⊹⣲ߩẜફᦼ㑆ߪ 40 ᐕߣ߽ 50 ᐕߣ߽⸒ࠊࠇߡ߅ࠅ߹ߔߩߢ‫ޔ‬రᢎ⡯
ຬ෸߮రቇ↢ߩᣇߢ‫ޔ‬ஜᐽߦᔃ㈩ߥᣇߪਅ⸥ߩஜᐽ⋧⺣⓹ญߦߏ৻ႎߊߛߐࠆࠃ߁߅㗿޿ߒ߹ߔ‫ޕ‬
ߥ߅‫‛ޔ‬ᕈ⎇ⓥᚲ቟ోⴡ↢▤ℂቶ޽ߡ‫ߏޔ‬ㅪ⛊޿ߚߛ޿ߡ߽ኻᔕ޿ߚߒ߹ߔߩߢ‫․ޔ‬ᱶஜᐽ⸻ᢿ
߿଻ஜᜰዉࠍᏗᦸߔࠆᣇ‫ޔ‬㆙ᘦߥߊ߅໧޿วࠊߖߊߛߐࠆࠃ߁߅㗿޿ߒ߹ߔ‫ޕ‬
⋧⺣⓹ญ㧦᧲੩ᄢቇⅣႺ቟ోᧄㇱ ᜂᒰ ᴡේ‫ޔ‬ጊᧄ
㔚⹤㧦㧜㧟㧔㧡㧤㧠㧝㧕㧝㧜㧡㧞
F a x㧦㧜㧟㧔㧡㧤㧠㧝㧕㧝㧜㧡㧟
᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ቟ోⴡ↢▤ℂቶ ᜂᒰ ᄢỈ
㔚⹤㧦㧜㧠㧔㧣㧝㧟㧢㧕㧟㧡㧤㧢㩷
F a x㧦㧜㧠㧔㧣㧝㧟㧢㧕㧟㧞㧝㧢㩷
㩷
89
໤଻ࡄ̺ͤ͢ల 57 ‫ے‬࿒჏Ȫలˍ࣢ȡలː࣢ȫ!
ల 57 లˍ࣢! ! 3117 ාː࠮!
ࡔ࠱ࠬࠦࡇ࠶ࠢ♽‛ℂቇߩℂ⺰⎇ⓥ㧦ఝ⑲ߥታ㛎ኅߣߣ߽ߦ xxxxxxxxxxxxxx ᳯ⮮ ᐙ㓶 xxxxxxxxxxxxxxxxxxxxx ᄖ࿖ੱቴຬᚲຬࠍ⚻㛎ߒߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Yong-Shi WU xxxxxxxxxxxxxxxxxx ࡢࡦࡈ࡟࡯࠭ࡈࠖࠫ࠶ࠢࠬ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 㑐Ꮉ ᄥ㇢ xxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⍴ᦼ⎇ⓥળႎ๔
٤ᰴ਎ઍ࠽ࡁ࡮ࠛ࡟ࠢ࠻ࡠ࠾ࠢࠬߩߚ߼ߩ㔚ሶ⁁ᘒ⸘▚ߩၮ␆ℂ⺰ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣⹤ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘ࡯ࠬ
٤ੱ੐⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎຬ౏൐ߩㅢ⍮ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼ⍴ᦼ⎇ⓥળ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼᄖ᧪⎇ⓥຬ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼࠬ࡯ࡄ࡯ࠦࡦࡇࡘ࡯࠲౒ห೑↪ណᛯ⺖㗴৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲਛᕈሶ࿁ᨆⵝ⟎౒ห೑↪ណᛯ⺖㗴৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼ౒ห೑↪ߩ౏൐ߦߟ޿ߡ㧔ㅢ⍮㧕 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᄖㇱ⾗㊄ߩฃ౉ࠇߦߟ޿ߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤╙ ࿁‛ᕈ⧯ᚻᄐߩቇᩞ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ✬㓸ᓟ⸥
ల 57 ‫ے‬లˎ࣢! ! 3117 ා˓࠮!
㊂ሶ࠼࠶࠻ࠍ฽߻♽ߩࠦࡅ࡯࡟ࡦ࠻વዉ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ൎᧄ ା๋ xxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ߢߩ⎇ⓥߦߟ޿ߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ᷰㄝ ⌀ੳ xxxxxxxxxxxxxxxxxxxxx ᄖ࿖ੱቴຬᚲຬࠍ⚻㛎ߒߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Ara SEDRAKYAN Christoph JANOWITZ
‛ᕈ⎇ⓥᚲ⍴ᦼ⎇ⓥળႎ๔
٤᦭ᯏ‛⾰ߩ࠽ࡁ㔚ሶ‛ᕈ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤․⇣‛ᕈ⊒⃻ࠍᜂ߁ࡈࠜࡁࡦߩ⎇ⓥߦ߅ߌࠆᣂዷ㐿 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣⹤ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘ࡯ࠬ
٤ੱ੐⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎຬ౏൐ߩㅢ⍮ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ల 57 ‫ے‬లˏ࣢! ! 3117 ා 21 ࠮!
‫ޟ‬࿖㓙‛ᕈ⎇ⓥ᜚ὐ㧦ᒝ⏛႐ࠦ࡜ࡏ࡜࠻࡝࡯ߩᒻᚑ‫ ߡ޿ߟߦޠ‬xxxxxxxxxxxx ㊄㆏ ᶈ৻ xxxxxxxxxxxxxxxxxxxxx 90
‛ᕈ⎇ⓥᚲ࿖㓙ࡢ࡯࡚ࠢࠪ࠶ࡊ࡮ࠪࡦࡐࠫ࠙ࡓႎ๔ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤Computational Approaches to Quantum Critical Phenomenaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣⹤ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘ࡯ࠬ
٤ੱ੐⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎຬ౏൐ߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲቴຬᢎ᝼
ഥᢎ᝼౏൐ߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ ᐕᐲᣣ☨දജ㨬ਛᕈሶᢔੂ㨭⎇ⓥ⸘↹౏൐ߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼ⍴ᦼ⎇ⓥળ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼᄖ᧪⎇ⓥຬ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼࠬ࡯ࡄ࡯ࠦࡦࡇࡘ࡯࠲౒ห೑↪ណᛯ⺖㗴৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼ౒ห೑↪౏൐ߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᄖㇱ⾗㊄ߩฃ౉ࠇߦߟ޿ߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ශ೚ਇ㞲᣿ߦߟ޿ߡߩ߅⹟߮ߣ⸓ᱜ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ✬㓸ᓟ⸥
ల 57 ‫ے‬లː࣢! ! 3118 ාˍ࠮!
⎇ⓥቶߛࠃࠅ
٤LIPPMAA ⎇ⓥቶ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Mikk LIPPMAA xxxxxxxxxxxxxxx ᄖ࿖ੱቴຬᚲຬࠍ⚻㛎ߒߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Cun-Zheng NING
Yuriy BUNKOV Carlos WEXLER ‛ᕈ⎇ⓥᚲ⍴ᦼ⎇ⓥળႎ๔
٤᳓‫ޔ‬᳖‫ޔ‬᳓⚛ࠍၮ⺞ߣߒߚ㜞࿶ਅߢߩ࿾⃿ᖺᤊ⑼ቇߣ‛ᕈ⑼ቇ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ࠟ࡜ࠬォ⒖ߩ⛔৻᭎ᔨ㧦⻉ℂ⺰ߩ⋧੕㑐ଥߣታ㛎⊛ᬌ⸽ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤㊂ሶࠬࡇࡦ♽ߩ‛ℂ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᣂߚߥ‛ᕈ⎇ⓥ૕೙ߩ᭴▽ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣⹤ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘ࡯ࠬ
٤ੱ੐⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤߅⍮ࠄߖ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤‛ᕈ⎇ߛࠃࠅ╙ Ꮞ⋡㍳㧔╙㧝ภ㨪╙㧠ภ㧕 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ✬㓸ᓟ⸥
91
༎ġ ਬġ ࢃġ ܱ
2007 ᐕߦߥࠅ߹ߒߚ‫੹ޕ‬ᐕߪᥦ౻ߣ⸒ࠊࠇߡ߅ࠅ߹ߔ߇‫ޔ‬㑐⷏಴りߩ⑳ߦߣࠅ
߹ߒߡߪ‫੹ޔ‬ᐕߩᨰߩ౻߽㓐ಽኙߊᗵߓߡ߅߹ߔ‫ޕ‬11 ᦬ᧃߦ‫ߣ࡯߸ࠄࠄޔ‬ᨰߩ⪲߇
ࠝ࡯ࡊࡦߒ‫ޔ‬ᨰࠠࡖࡦࡄࠬ๟ㄝ߽‫ޔ‬ᄢಽ⪇߿߆ߦߥࠅ߹ߒߚ‫ޕ‬ㅳᧃߪ੤ㅢᷦṛࠍᒁ
߈⿠ߎߔߎߣ߽޽ࠅ‫ޔ‬ዋ‫ޘ‬ා੺ߥ㕙߽޽ࠅ߹ߔ߇‫ޔ‬໡ᬺᣉ⸳߇ㄭߊߦߢ߈ࠆߎߣ
ߪ‫ߩߎޔ‬࿾ၞߩ᭽‫ࠍߩ߽ߥޘ‬ᵴᕈൻߐߖߡߊࠇࠆߣᕁ޿߹ߔ‫ޕ‬
ߐߡ‫ᧄޔ‬ภߢߪ‫ޔ‬Lippmaa ᚲຬߦ‫⎇ޔ‬ⓥቶߛࠃࠅߩၫ╩ࠍ߅㗿޿ߒ߹ߒߚ‫㉄ޕ‬ൻ
‛ߩ⭯⤑ൻߦࠃࠅ‫ޔ‬ᚑ㐳᧦ઙࠍᄌ߃ࠆߎߣߢ᭽‫‛ߥޘ‬ᕈࠍ೙ᓮߢ߈ࠆ଀߇‫ޔ‬ታ㓙ߩ
ታ㛎⚿ᨐߣวࠊߖߡᢙᄙߊ⸥ߐࠇߡ޽ࠅ‫ઁޔ‬ಽ㊁ߩᣇߢ߽ಽࠅ߿ߔ޿‫ߺ⺒ޔ‬ᔕ߃ߩ
޽ࠆ⸥੐ߦߥߞߡ޿߹ߔ‫ޔߚ߹ޕ‬㧟ฬߩᄖ࿖ੱቴຬᚲຬߩవ↢ᣇߦߪ‫‛ޔ‬ᕈ⎇ߢߩ
ṛ࿷⸥ࠍၫ╩ߒߡ㗂߈߹ߒߚ‫ޕ‬Wexler వ↢߆ࠄߏᜰ៰㗂޿ߚࠦࡔࡦ࠻ߪ‫੹ޔ‬ᓟߩ
ߚ߼ߦ᦭↪߆ߣᕁࠊࠇ߹ߔ‫ޔߚ߹ޕ‬ᴛጊߩ⍴ᦼ⎇ⓥળߩႎ๔ᦠ߽ឝタߐߖߡ㗂޿ߡ
޿߹ߔ‫⎇ߩߤޕ‬ⓥળ߽ᵴ⊒ߥ⼏⺰߇ᚑߐࠇߡ޿ߚߎߣ߇ᗵߓขࠇࠆߣᕁ޿߹ߔߩ
ߢ‫⺒৻ߏޔ߭ߗޔ‬㗂ߌࠇ߫ߣᕁ޿߹ߔ‫ޕ‬
੹ภߢ‫ޔ‬ೋ߼ߡ‛ᕈ⎇ߛࠃࠅߩ✬㓸ࠍᜂᒰߐߖߡ㗂߈߹ߒߚ߇‫౒ޔ‬ห೑↪ଥߩ㑐
ߐࠎߦߪ‫ޔ‬ᄢᄌ߅਎⹤ߦߥࠅ߹ߒߚ‫߅ޕ‬㒶᭽ߢή੐ߦ⊒ೀߔࠆߎߣ߇ߢ߈߹ߒߚ‫ޕ‬
ߎߩ႐ࠍ୫ࠅߡ߅␞↳ߒ਄ߍ߹ߔ‫ᦨޕ‬ᓟߦ‫ᧄޔ‬ᐕ߽⊝᭽ߦߣߞߡᐘߖᄙ߈ᐕߣߥࠆ
ߎߣࠍᔃࠃࠅ㗿ߞߡ߅ࠅ߹ߔ‫ޕ‬
ᧁ ᧛ ፏ
Fly UP