...

06.fr COS

by user

on
Category: Documents
2

views

Report

Comments

Description

Transcript

06.fr COS
1
3. Transfer equation (放射伝達方程式)
Extraterrestrial irradiance
Solar insolation
Transfer of radiation
2
Upwelling radiance
L-
F0
TOA
Emission
Atmosphere
()
Scattering volume
Airmass
Absorption
Attenuated direct
() flux
Lg
-
E(T)
Downwelling radiance
F
L+
Water/Ice body
Earth’s surface
Soil/Plant canopy
Radiation budget () of the atmosphere
3
(102)
(175)
(26)
198
(385)
(345)
BSRN (A. Ohmura)
IPCC-AR4 (2007)
The radiation transfer equation
4
Optical thickness: d= -edz
Single scattering albedo: = s/e
Scattering angle: dL() = edxL() + sdx P(, )L( )d + adxB(T )
Extinction
4
Scattering J
Emission
Source
dx
L-edxL
d
L
adxL
5
Radiative transfer equation for a plane parallel atmosphere
Optical thickness: d= -edz
Single scattering albedo: = s/e
Scattering angle: d= dz/μ
2
dL( , μ, )
μ
= L( , μ, ) + d μ d P( μ, μ , )L( , μ , ) + (1 )B(T )
d
1
0
1
μ = cos
z
(e) = (sin cos , sin sin , cos )
L
cos = = cos cos + sin sin cos( )
= μμ + 1 μ 2 1 μ 2 cos( )
y
x
6
4. Transfer of Thermal Radiation
7
Transfer of thermal radiation
=0 for > 4 m in cases other than cloudy atmosphere
TOA radiance and black body radiances at various temperature(Goody and Yung,
1989 )
±μ
dL ± ( , μ, )
= L ± ( , μ, ) + B(T )
d
L (0) = [ s B(Ts ) + (1 s )F ( s ) / ]e
+
s / μ
s
+ B(T (t))et / μ dt / μ
0
s
L+ (0) = B(T (t))e( s t )/ μ dt / μ
0
L
0
B(T)
dt
sB(Ts)
s
8
Remote sensing of temperature
Weighting function
s
s
0
0
=k
Lpath B(T (t))et / μ dt / μ = B(T )W (P)dP
dP
dt = a(T )dz = a(T )
g
M n M P
PV = nRT , = air = air
V
RT
N
CN air
CN air P
CN A P
a=k =k
=k
=k
V
V
nRT
RT
a
CN A P RT
dt =
dP = k
dP = PdP
g
RT M air Pg
=
k̂ CN A
CN A
k̂
, if k = k̂P
P M air gP
M air g
p
t = PdP 0
P2
, if = const
2
W (P) = e P /2 P
CN A
CNA
kˆ
MairgP
M airg
= 1,
2, 3, 5, 10
P
2
Pmax = 1 / , Wmax = e
1/2
W
Tiros Operational Vertical Sounder/HIRS Remote sensing of temperature profile
Use of infrared radiance spctrum
9
10
High resolution spctrum
Gas absorption line and band
E = E e + Ev + E r + Et
Water vapor: 0.7, 0.8, 0.9, 1.1, 1.4, 1.9, 2.7, 6.3, rotation
CO2 :2.0, 2.7, 4.3, 15
O3 :UV, 0.76, 9.6, 14
p T0 n
L ( p, T ) = L ( p 0, T 0 ) p ( )
0 T
f (0)
f (0)/2
0 +
11
12
Polar clouds over snow
(3.7m)-
(10m)
Cirrus
(10m)-
(11m)
Yamanouchi et al. (JMSJ1987)
13
14
15
5. Radiative Transfer in Optically Thin
Atmospheres
Solar radiation transfer(B=0) in the Clear sky atmosphere
(Optically thin atmosphere)- Direct radiation
2
dL( , μ, )
μ
= L( , μ, ) + d μ d P( μ, μ , )L( , μ , )
d
1
0
1
L = L(0) ( 0 ) + L(1) ( 1 ) + L(2) ( 2 ) + ...
Non scattering, single scattering, multiple scattering
dL(0) ( , μ, )
μ
= L(0) ( , μ, )
d
L(0) ( , ) = F0 e / μ0 ( 0 ) ( 0 )
L0 ( , ) = F0 ( 0 ) ( 0 )
16
Solar radiation transfer in the Clear sky atmosphere (Optically
thin atmosphere)- Single scattering radiation
17
L(0) ( , , ) = e / μ F0 ( 0 ) ( 0 )
dL(1) ( , , )
μ
= L(1) ( , , ) + d μ d P( μ, μ , )L(0) ( , , )
d
1
1
1
1
= L(1) ( , , ) + P( μ, μ0 , 0 )e / μ0 F0
μ
dL( , μ, )
= L( , μ, ) + J( , μ, )
d
L( , μ, ) = L( 0 , μ, )e
+
Z
F0
0
( 0 )/ μ
t
1
J(t, μ, )e( t )/ μ dt
μ 0
P()
F
t+dt
L(, )
Solar radiation transfer in the Clear sky atmosphere (Optically
thin atmosphere)- Single scattering radiation
L( , μ, ) = L( 0 , μ, )e
( 0 )/ μ
1
+ J(t, μ, )e( t )/ μ dt
μ 0
J( , μ, ) = P( μ, μ0 , 0 )e / μ0 F0
e / μ0 e / μ
L1 ( , + μ, ) = F0 P(+ μ, μ0 , 0 )
1 μ / μ0
L1 (0, μ, ) = L( 0 , μ, )e
( 0 )/ μ
1 e (1/ μ +1/ μ0 )
+ F0 P( μ, μ0 , 0 )
1 + μ / μ0
<< 1
2nd term 1
F0 P(± μ, μ0 , 0 )
μ
18
19
Thin atmospheres
Molecules and aerosols in the shortwave region
2 wavelength problem (color ratio)
μ > 0, L P()F0
μ
μ < 0, L P()F0 + Lg , =
P() + Ag
μ
μ μ0
2 2 2 P2 () 2
= ( 2 ) 1 1 1P1 () 1
1
Reciprocity principle
F0
Lg
P()
F Comparison of Aerosol optical thickness (AOT)
from MIROC-GCM and two satellites (GLI
and MODIS) (Nakajima and Schulz, 2009).
April 2003
L(, )
MIROC+SPRINTARS
ADEOS-II/GLI (Fukuda)
TERRA/MODIS (NASA/GSFC)
AOT
20
21
9) Atmospheric correction and Land PAR
Only Rayleigh
correction
22
After the 380nm
correction
•By using GLI 380nm channel, we can estimate aerosol scattering.
Courtesy: H.Murakami (JAXA)
Global monitoring and simulation of aerosols
Model underestimation of AOT
23
Nakajima and Schulz (FIAS2008)
24
ADEOS-II/GLI products
April 2003 (Spring) San Francisco 250m ocean
GLI 250m RGB:
22/21/202003.5.
26
Snow grain size
Snow surface tempearture
25
Angular scattering cross section
)4!/(&'1,$00#(01/(!21(-,9:L(μ, μ0, -0)
(/$"10-* /(// #( ,"$:;F0 " 11$/(,&.' 0$%2,"1(-,9:P()
P( + )F0
μ
P( + ) = sdzP( + ) = Csca NdzP( + )
L
, =
P( + ) = drn(r) r 2Qsca ( , , m)
0
n(r)
P( + ), Qsca ( , m)
dV
4 r 4
v(ln r) =
n(r)
d ln r
3
2 r
,3$/0(-,./-!*$+-%0(5$#(01/(!21(-,
8679:
26
Dubovik et al. (2002)
Early 80s situation
27
Heavy
Manual
Difficult data analysis
28
SKYNET
Sky radiometers
IMD in New Delhi, March, 2006, Kazuma AOKI
29
Angular integrations of the phase function
Legendre polynomial expansion
Asymmetry factor
g: 0 (isotropic), 0.6-0.7 (aerosols), and 0.8-0.85 (clouds)
Forward and backward scattering fractions
Up and down scatter fractions
1 1
P(cos) =
(2n + 1)gn Pn (cos) (1 + 3g cos)
4 n = 0
4
cos ± = ± μμ0 + (1 μ )(1 μ ) cos( 0 )
2
2
0
F0
2
1
0
d cos dP(cos) = 1
1
0
1
2
1
0
b
d cos d cosP(cos) = g
1
2
± ( μ0 ) = d μ dP(cos ± ) =
0
0
1
2
0
0
f = d cos dP(cos) =
b = 1 f
f
1
3
(1 ± gμ0 )
2
2
P()
1
3
(1 + g)
2
2
g > 0.7 f > 1, b < 0!
Flux transmissivity and reflectivity
+
30
Unidirectional flux transmissivity: t(μ0)
Unidirectional flux reflectance: r(μ0)
Spherical reflectance: <r>
μ = cos , μ0 = cos 0
m = 1 / μ , m0 = 1 / μ 0
(m + m0 ) << 1
L e m0 ( μ μ0 ) ( 0 )F0 + mP(+ μ, μ0 , 0 )F0
1
t( μ0 ) =
μ0 F0
=e
m0
2
1
0
0
d d μμ L(μ, μ , )
0
2
1
0
0
0
+ m0 d d μ P() = e m0 + m0 + ( μ0 ) = 1 m0 [1 + ( μ0 )]
r( μ0 ) = m0 ( μ0 )
1
2
0
0
± ( μ0 ) = d μ dP(cos ± ) =
1
3
(1 ± gμ0 )
2
2
31
Radiative energy budget
3
1
(1 + gμ0 )]
2
2
3
1
r( μ0 ) = m0 (1 gμ0 )
2
2
3
3
1
1
t + r = 1 m0 [1 (1 + gμ0 )] + m0 (1 gμ0 )
2
2
2
2
= 1 m0 (1 )
t( μ0 ) = 1 m0 [1 t +r+a =1
32
Spherical albedo (Planetary albedo)
1
2
1
2
1
2
0
0
0
0
0
0
r = d μ0 d0 r( μ0 )μ0 F0 / d μ0 d0 μ0 F0 = d μ0 d0 ( μ0 ) / 1
= d μ0 (1 0
3
3
1
1
gμ0 ) = 2 (1 g) = r( )
2
4
2
2
33
Atmosphere-Earth’s surface problem
Principle
of reciprocity
L = mP( μ, μ0 , 0 )F0 +
1 t ( μ )A(1 rA)1 t + ( μ0 )μ0 F0
L
= mm0 P( ) + t( μ )A(1 + rA)t( μ0 )
μ0 F0
1
t( μ0 ) = 1 tˆ( μ0 ) , r = r̂( )
2
3
3
1
1
tˆ( μ0 ) m0 [1 (1 + gμ0 )], r̂( μ0 ) m0 (1 gμ0 )
2
2
2
2
1
mm0 P( ) + A [tˆ( μ ) + tˆ( μ0 ) r̂( )A]A
2
=
34
Reflected radiation from a thin atmospheres (Detailed) Neutral reflectance: deriving d
= mm0 P( ) [tˆ( μ ) + tˆ( μ0 ) r̂A]A = 0
d
A << 1
mm P(cos )
An = 0 t ( μ ) + t ( μ0 )
35
Equation for the planetary albedo
Averaged
radiation field for the planet
S
(global average)
4
S
= (daytime average)
2
QSW =
a 2 S
36
Earth’s reflectance in the clear sky condition
Flux reflectance
Planetary albedo
mm0 P( ) + t( μ )t( μ0 )Ag
rAL ( μ0 ) Fref
μ0 F0
1
2
0
0
= d μμ d[mm0 P( ) +
1
t( μ )t( μ0 )Ag ]
1
rAL ( μ0 ) = r( μ0 ) + t( )t( μ0 )Ag
2
dS = 2 rE sin 0 rE d 0 = 2 rE2 d μ0
dSr
AL
rP =
2
( μ0 )μ0 F0
rE2 F0
1
1
= 2 d μ0 r( μ0 )μ0 = rAL ( )
2
0
rE
Latitude
37
Shortwave radiative forcing of aerosols
1
t( μ0 ) = 1 tˆ( μ0 ) , r = r̂( )
2
3
3
1
1
tˆ( μ0 ) m0 [1 (1 + gμ0 )], r̂( μ0 ) m0 (1 gμ0 )
2
2
2
2
1
mm0 P( ) + A [tˆ( μ ) + tˆ( μ0 ) r̂( )A]A
2
1
A 0.07 rP = r̂( μ0 ) + A 2tˆ( μ0 )A , μ0 =
& %
2
"$#'!'
rP {r̂( μ0 ) 2tˆ( μ0 )A}
= 1 tˆ( μ0 ) = r̂( μ0 )
g
gamtau
n
Tu
A
ARF
rP r̂( μ0 )(1 2A)
Charlson et al. (1992)
FS = (1 n)rp rE2 / 4 rE2
= 2(1 n)tu 2 (1 A)2 ( μ0 ) Q
F
Q = 0 , = 0.04, FS = 1.3W / m 2
4
0.60
0.28
0.04
0.60
0.76
0.15
-1.26
38
39
References
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, Jr., J. E. Hansen,
and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255,
423-430.
Dubovik, O., et al., 2002: Variability of absorption and optical properties of key aerosol
types observed in worldwide locations. J. Atmos. Sci., 59, 590-608.
Takemura, T., T. Nozawa, S. Emori, T.Y. Nakajima, and T. Nakajima, 2005: Simulation
of climate response to aerosol direct and indirect effects with aerosol transport-radiation
model. J. Geophys. Res., doi:10.1029/2004JD005029.
Tanaka, M., T. Takamura and T. Nakajima, 1983: Refractive index and size distribution
of aerosols as estimated from light scattering measurements. J. Climate Appl. Meteor.,
22, 1253-1261.
Fly UP