...

初代ラット大脳皮質由来神経細胞の凍結保存条件に及ぼす凍結速度

by user

on
Category: Documents
5

views

Report

Comments

Transcript

初代ラット大脳皮質由来神経細胞の凍結保存条件に及ぼす凍結速度
Title
Author(s)
Citation
Issue Date
初代ラット大脳皮質由来神経細胞の凍結保存条件に及ぼ
す凍結速度依存性
内田, 努; 本村, 寿太郎; 永山, 昌史; 郷原, 一寿
低温生物工学会誌 = Cryobiology and Cryotechnology, 53(2):
161-166
2007-12-30
DOI
Doc URL
http://hdl.handle.net/2115/36104
Right
Type
article (author version)
Additional
Information
File
Information
uchida-8.pdf
Instructions for use
Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
఩Ὼ⏍∸ᕝᏕఌヽࠜCryobiology and Cryotechnologyࠝ㸡 Vol. **, No. *, ***㹳***, 200*
ิ௥ࣚࢴࢹኬ⬳⓮㈻⏜ᮮ♼⤊ ⣵⬂ࡡ
෼⤎ಕᏋ᮪௲࡞ཀྵ࡯ࡌ෼⤎㏷ ᗐ౪Ꮛ ᛮ
໪ᾇ㐠ኬᏕኬᏕ㝌ᕝᏕ◂✪⛁
හ⏛ ຑ㸡ᮇᮟᑋኯ㑳㸡Ễᒜ᪸ྍ㸡㒋ཋୌᑋ
Effects of Cooling Rate on Cryopreservation Conditions of
Primary Rat Cortical Cells
Tsutomu UCHIDA, Jutaro MOTOMURA, Masafumi NAGAYAMA, and Kazutoshi GOHARA
Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628, Japan
Developments of cryopreservation techniques on primary rat cortical cells were carried out
to observe the effect of cooling rates. Primary rat cortical cells were dispersed in the
cryopreserving medium including 5 vol% dimethylsulfoxide, and then they were frozen by
various cooling rates ranged from -3 K/min to -150 K/min. The survival ratio was estimated
qualitatively by using the phase-contrast microscope. The feasibility of the neural activity was
verified by measuring its spontaneous action potential with a multi-electrode array system.
Based on these characterizations, the lower cooling rate of the dispersed sample was more
feasible for the cryopreservation of the primary rat cortical cells.
(Received ***; Accepted ***)
⥬ ゕ
ჹ⣌ࡡ୯ᚨ࡛࡝ࡾᚨ➵⣵⬂࡝࡜ኣࡂࡡ⣵⬂⛸࡚㸡⌟
ᅹ࡚ࡵ෼⤎ಕᏋᢇ⾙ࡡ㛜Ⓠ࠿ᙽࡒࡿ࡙࠷ࡾ㸣ኣࡂࡡ
⣵⬂ࡷ⤄⧂ࡡ෼⤎ಕᏋᢇ⾙ࡢ㸡ཿࡂࡢ⏍∸ࡡ఩Ὼ
෼⤎ಕᏋྊ⬗࡝⛸㢦ࡡ⣵⬂ࡢቌṢ⬗ࢅ᭯ࡊ࡙࠽ࡽ㸡
㝸ᐐ࡞ᑊࡌࡾ◂✪࡞ጙࡱࡽ㸡⌟ᅹ࡚ࡢ෫෼㣏ဗ࠾ࡼ
෼⤎よ෼࡞࠽࠷࡙΅ᑛࡊࡒ⣵⬂ᩐࡵよ෼ᚃࡡᇰ㣬࡞
්⏍༈⒢࡞㛭ࡌࡾࡵࡡࡱ࡚ᖕᗀࡂ◂✪ࡈࡿ࡙ࡀ࡙࠷
ᑊࡊ࡙ኬࡀ࡝ᙫ㡢ࢅ୙࠻ࡾࡆ࡛ࡢ࡝࠷㸣ࡊ࠾ࡊ♼⤊
ࡾࠔཿࡂ࡙᩺ࡊ࠷ၡ㢗ࠕ࡚࠵ࡾ
1)
㸣⏐ᴏ࡞├⤎ࡊࡒ
⣵⬂ࡷᚨ➵⣵⬂ࡢ⣵⬂ฦ⿛࡞ࡻࡾቌṢ⬗࠿࡮࡛ࢆ࡜
ၡ㢗࡚࠵ࡾ࠿ࡒࡴ࡞㸡ᵕࠍ࡝ࢪࢠ࣭ࣛࢼࣤࢡ࡞ࡻࡖ
↋࠷ࡒࡴ㸡㧏ᗐ࡝෼⤎ಕᏋᢇ⾙ࡡ㛜Ⓠ࠿ᚪさ࡛ࡈࡿ
࡙࠵ࡾ⣵⬂⛸࡞ᑊࡌࡾ㐲ว࡝෼⤎᪁Ἢࢅぜࡗࡄࡾ࡝
ࡾࡡ࡚࠵ࡾ㸣
࡜ᢇ⾙㛜Ⓠ࠿୹࡛ࡊ࡙⾔ࢂࡿ࡙ࡀ࡙࠽ࡽ㸡ࡐࡡ࣒࢜
ິ∸࠾ࡼㄢ⿿ࡈࡿࡒ⣵⬂ࡢ㸡ࡐࡡ⏍∸ᏕⓏ࡝࣒࢜
ࢼࢫ࣑࡝࡜ᇱ♇Ⓩ࡝ฦ㔕ࡢࡱࡓ༎ฦよ᪺ࡈࡿ࡙࠷࡝
ࢼࢫ࣑ࢅよ᪺ࡌࡾ◂✪࡝࡜࡞࠽࠷࡙ᗀࡂ⏕࠷ࡼࡿ࡙
࠷ࡡ࠿⌟≟࡚࠵ࡾ㸣ᚉࡖ࡙෼⤎ಕᏋ࡚ࡀࡾ⣵⬂⛸ࡢ
࠷ࡾ㸣㎾ᖳࡡ⏍࿤⛁Ꮥࡡ◂✪࡚ࡢິ∸モ㥺ࢅᴗງᑛ
㝀ࡼࡿ࡙࠽ࡽ㸡⏍∸ࡡ୯ᯙࢅྒྷࡾ♼⤊⣵⬂ࡷ㸡ᚘ⎌
࡝ࡂࡌࡾ᪁ྡྷ࡚᳠ゞࡈࡿ࡙࠽ࡽ
2)
㸡๭ⷾࡷ්⏍༈⒢
ฦ㔕࡝࡜࡚ิ௥ᇰ㣬⣵⬂ࡡ㞺さ࠿௑ᚃቌኬࡌࡾࡆ࡛
➠ 53 ᅂ఩Ὼ⏍∸ᕝᏕఌ◂✪ሒ࿈**.
࠿஢᝷ࡈࡿ࡙࠷ࡾ㸣≁࡞♼⤊⣵⬂ࡡ෼⤎ಕᏋࡢᏕ⾙
[Key words: Neuron, Cryopreservation, Cooling
㟻㸡⏐ᴏ㟻࡞࠽࠷࡙㔔さ࡚࠵ࡾ㸣ౚ࠻ࡣ㸡♼⤊⣵⬂
rate, Action potential; ♼⤊⣵⬂㸡෼⤎ಕᏋ㸡෼⤎
ࡢᑛ㔖ࡡẐᛮ∸㈻࡞ᑊࡊ࡙ࡵཬᚺࢅ♟ࡌࡆ࡛࠾ࡼ㸡
㏷ᗐ㸡Ὡິ㞹న]
๭ⷾ᫤ࡡࢪࢠ࣭ࣛࢼࣤࢡ࡞⏕࠷ࡾࡆ࡛ࡢ㟸ᖏ࡞᭯ຝ
࡚࠵ࡾ࡛⩻࠻ࡼࡿ࡙࠷ࡾ㸣ᚉࡖ࡙ࡆ࠹ࡊࡒ㞺さࡡ㧏
࠷࠹ᶭ⬗࠿ಕᏋࡈࡿ࡝ࡄࡿࡣ࡝ࡼ࡝࠷㸣ࡊ࠾ࡊ㸡⌟
࠷⣵⬂ࢅ෼⤎ಕᏋࡌࡾᢇ⾙㛜Ⓠࡢ㸡ୠ⏲୯ࡡ㞺さ඙
ᅹࡱ࡚ࡐ࠹ࡊࡒ෼⤎ಕᏋ࣬ဗ㈻フ౮ᢇ⾙࠿☔❟ࡊ࡙
࡞ᑊࡌࡾᆍ㈻࡝⣵⬂ࡡᏭᏽ౩⤝࡞࡛ࡖ࡙㟸ᖏ࡞㔔さ
࠷ࡾ࡛ࡢゕ࠷㞬࠷㸣
࡚࠵ࡾ㸣෼⤎ࡌࡾฺⅤ࡛ࡊ࡙㸡ㄢ⿿ࡊࡒิ௥⣵⬂ࢅ
ᮇ◂✪ࡢ㸡ฦᩋࡈࡿࡒิ௥⣵⬂ࢅࡐࡡᶭ⬗ࢅ᥾࡝
ࢤࣤࢰ࣐ࢾ࣭ࢨࣘࣤ(⣵⬂ࡡỗ᯹)ࡈࡎࡍ࡞㛏᭿㛣ಕ
ࢂࡍ࡞෼⤎ಕᏋࡌࡾᢇ⾙ࡡ㛜Ⓠ࡛࣒࢜ࢼࢫ࣑ࡡよ᪺
Ꮛ࡚ࡀࡾࡆ࡛ࡷ㸡ᚪさ᫤࡞ᚪさ࡝㔖ࡓࡄཱིࡽฝࡊ࡙
ࢅ┘Ⓩ࡛ࡊ࡙࠷ࡾ㸣≁࡞㞺さࡡ㧏࠷♼⤊⣵⬂ࡷᚨ➵
౐⏕࡚ࡀࡾࡆ࡛࡝࡜࠿ᣪࡅࡼࡿࡾ㸣ࡱࡒ㸡෼⤎᫤࡞
⣵⬂ࢅᑊ㇗࡞㸡෼⤎㏷ᗐ࡛෼⤎ಕ㆜๠࡞ࡗ࠷࡙Ἰ┘
ࡢ⣵⬂ࡡ௥ㅨ࠿ᴗ❻࡞ᢒ࠻ࡼࡿࡾࡡ࡚㸡⏍∸࡞࡛ࡖ
ࡊ࡙◂✪ࢅ㐅ࡴ࡙࠷ࡾ
࡙ࡡ᫤㛣ࢅḾࡴࡼࡿࡾ࠾ࡵࡊࡿ࡝࠷࡛࠷࠹⮾࿝ࢅᢢ
ᑊ㇗࡞㸡෼⤎㏷ᗐࡡ㐢࠷࠿⣵⬂ࡡ⸵⏍⋙࡞ཀྵ࡯ࡌᙫ
3)
ࡂࡆ࡛ࡵ࡚ࡀࡾ 㸣
9)
㸣ࡆࡆ࡚ࡢิ௥♼⤊⣵⬂ࢅ
㡢ࢅ᳠ゞࡊࡒ㸣ࡈࡼ࡞よ෼ࡊࡒ⣵⬂ࢅኣ㞹ᴗᇱᯀ୕
⣵⬂ࢅ෼⤎ࡌࡾ㝷࡞ࡢ㸡⣵⬂හࡡểᬏ⏍ᠺࢅᢒโ
ࡌࡾࡆ࡛࠿㔔さ࡚࠵ࡾ㸣෼⤎よ෼࡞ࡻࡖ࡙⣵⬂࠿᥾
ഭࢅུࡄࡾさᅄࡢ࠷ࡂࡗ࠾⩻࠻ࡼࡿ࡙࠷ࡾ
1, 4)
࡚ᇰ㣬ࡌࡾࡆ࡛࡚㸡ྜྷ᫤࡞ኣᩐࡡ⣵⬂ࡡᶭ⬗ࢅ⠾౼
࡞ㄢ࡬ࡾフ౮Ἢࢅ㛜Ⓠࡊࡒ㸣
㸣ౚ࠻
ᮞᩩ࠽ࡻࡦ᪁Ἢ
ࡣ㸡⣵⬂හ࡞⏍ᠺࡊࡒể⤎ᬏ࠿⣵⬂හ㒂ࡡ々㞟࡝ᵋ
㏸మ࡞∸⌦Ⓩ࡝ᙫ㡢ࢅཀྵ࡯ࡌࡆ࡛࠿ᣪࡅࡼࡿࡾ㸣ࡱ
ࡒ㸡⣵⬂አ࡞⏍ᠺࡊࡒể⤎ᬏ࠿⣵⬂⭯࡞∸⌦Ⓩ࡝ᙫ
ࡱࡍ෼⤎᪁Ἢࡡ㐢࠷࡞ࡻࡾ෼⤎㏷ᗐࢅぜ✒ࡵࡾࡒ
㡢ࢅ୙࠻ࡒࡽ㸡⣵⬂አࡡể⤎ᬏᠺ㛏࡞ఔࡖ࡙⣵⬂හ
ࡴ㸡⣵⬂෼⤎࡞⏕࠷ࡾᇰ㣬ᾦࢅࢠࣚ࢕࢛ࢲ࣭ࣖࣇ୯
㒂ࡡ⁈ᾦ࠿⃨⦨ࡈࡿࡾᾈ㏩ᅸࢨࣘࢴࢠࡡࡻ࠹࡝໩Ꮥ
࡞ 1ml ථࡿࡒࡵࡡࢅモᩩ࡛ࡊ࡙㸡⇍㞹ᑊ࡞ࡻࡾῺᗐ
Ⓩ࡝ᙫ㡢ࡵ࠵ࡾ
4, 5)
㸣ể⤎ᬏ࠿⏍ᠺࡈࡿࡾሔᡜ࡞ࡗ࠷
ゝῼࢅ⾔ࡖࡒ㸣⠾༟࡝෫༴᪁Ἢ࡚෫༴㏷ᗐࢅᗀ⠂ᅑ
࡙ࡢ㸡෼⤎ࡌࡾ㝷ࡡ෫༴㏷ᗐࡡ㐢࠷࡞ࡻࡖ࡙࠵ࡾ⛤
࡞ን໩ࡈࡎࡾࡒࡴ㸡ᾦమ✽⣪ཧࡢ㸢80ΥࡡῺᗐࢅಕ
4, 6)
㸣᛬㏷෼⤎
㸝෼⤎㏷ᗐ㸯ᩐⓊΥ/min ⛤
࡙ࡾ Deep freezer ࢅ⏕࠷࡙෼⤎ࡈࡎࡒ㸝ձDeep freezer
ᗐ㸞࡛⥾ះ෼⤎㸝෼⤎㏷ᗐ㸯1Υ/min ⛤ᗐ㸞ࡡ୦⩽
୯᩷⇍ᮞහᨲ⨠㸡ղDeep freezer ୯ᨲ⨠㸡ճᾦమ✽⣪
࡞࠽࠷࡙㸡෼⤎㐛⛤࡚⏍ᠺࡌࡾể⤎ᬏ࡞ࡻࡽ⣵⬂ࡢ
ᾦ㟻├୕ಕᣚ㸡մᾦమ✽⣪୯ᾈ₍㸞㸣ࡐࡡ⤎ᯕ㸡෼⤎
୕オࡡࡻ࠹࡝ᙫ㡢ࢅུࡄࡾ㸣ࡊ࠾ࡊ㸡᛬㏷෼⤎࡚ࡢ
㏷ᗐࡢࡐࡿࡑࡿ Table 1 ࡡࡻ࠹࡞࡝ࡽ㸡෫༴㏷ᗐ࠿ 2
⣵⬂හࡱ࡚෼⤎ࡊ࡙࠷ࡾࡡ࡞ᑊࡊ࡙⥾ះ෼⤎࡚ࡢ⣵
᰾␏࡝ࡾᡥἪࢅᚋࡾࡆ࡛࠿࡚ࡀࡾࡆ࡛࠿☔ヾࡈࡿࡒ㸣
⬂አࡡࡲ࠿෼ࡖ࡙࠷ࡾࡻ࠹࡞㸡෼⤎㏷ᗐ࠿␏࡝ࡾ࡛
࡝࠽ಕᏋ᭿㛣ࡢ㸡྘᪁Ἢ࡚⏕࠷ࡒ෫፳ࡡῺᗐ࡚ಕᣚ
⣵⬂࠿ུࡄࡾể⤎ᬏࡡᙫ㡢ࡵን໩ࡌࡾ㸣ࡱࡒ⣵⬂෼
ࡊࡒ㸣
ᗐโᚒ࡚ࡀࡾ
⤎ࡡ㝷࡞ࡢ㏳ᖏ㸡෼⤎よ෼࡞ࡻࡾࢪࢹࣝࢪࢅ㍇΅ࡊ
࡙⣵⬂⸵⏍⋙ࢅྡྷ୕ࡈࡎࡾࡒࡴ㸡෼⤎ಕ㆜๠࡛࿣ࡣ
ࡿࡾ∸㈻࠿῟ຊࡈࡿࡾ㸣ࡆࡿࡱ࡚ࢡࣛࢬࣛࣤ
㸝 glycerol 㸞 ࡷ ࢩ ࣒ ࢲ ࣜ ࢪ ࣜ ࣆ ࢚ ࢞ ࢨ ࢺ
Table 1. Cooling rate and cryopreservation temperature
for each freezing process
Freezing procedures
Cooling rates
ձ stored in the
insulation box in the
deep freezer
ղ stored in the deep
freezer
ճ kept at just above
liquid N2 pool
մ kept in liquid N2
pool
㸢3Υ/min
Storage
temperatures
㸢80Υ
㸢10Υ/min
㸢80Υ
㸢30Υ/min
㸢197Υ
㸢150Υ/min
㸢197Υ
㸝dimethylsulfoxide, DMSO㸞࡝࡜ኣࡂࡡ∸㈻࠿෼⤎ಕ
㆜๠࡛ࡊ࡙⏕࠷ࡼࡿ࡙ࡀࡒ
7)
㸣ࡐࡊ࡙㸡᭯ຝ࡝ಕ㆜
๠ࡡ⛸㢦ࡢ⣵⬂⛸࡞ࡻࡖ࡙ࡵ␏࡝ࡾࡆ࡛࠿ฦ࠾ࡖ࡙
࠷ࡾ 8)㸣
㏳ᖏ⣵⬂ࡡ෼⤎ಕᏋᢇ⾙ࡡྊྫྷࡢ㸡୹࡛ࡊ࡙よ෼
ᚃࡡ⣵⬂ࡡ⸵⏍⋙࡚フ౮ࡈࡿ࡙࠷ࡾ㸣ࡱࡒ⣵⬂ᶭ⬗
ࡡフ౮Ἢ࡛ࡊ࡙㸡⣵⬂ࢅᇰ㣬࣬ฦ໩ࡈࡎ≁␏ࢰࣤࣂ
ࢠ㈻ࡡⓆ⌟➴ࢅㄢ࡬ࡾ᪁Ἢ࠿࠵ࡾ࠿㸡フ౮ࡱ࡚㛏᫤
㛣࠾࠾ࡽ㸡ࡐࡡ୕⣵⬂⮤㌗ࡵഭࡗࡄ࡙ࡊࡱ࠹ḖⅤ࠿
࠵ࡖࡒ㸣ࡈࡼ࡞♼⤊⣵⬂ࡷᚨ➵⣵⬂➴ࡡ㞹ẴⓏὩິ
෼⤎ᐁ㥺࡞⏕࠷ࡒモᩩࡢ㸡SD ࣚࢴࢹ᩺⏍ඡ㸝1㹳3
ࢅ⾔࠹ิ௥ᇰ㣬⣵⬂ࡢ㸡よ෼ᚃ࡞࣭ࣗࢧ࣭ࡡ౐⏕ࡌ
᪝௦㸞ࡡኬ⬳⓮㈻⏜ᮮࡡิ௥♼⤊⣵⬂࡚࠵ࡾ㸣ᇰ㣬
ࡾモ㥺ᶭ࡚ᇰ㣬࡚ࡀ㸡⮤ⓆⓏ࡞㞹ẴⓏὩິࢅ⾔࠹࡛
ᾦࡢ DMEM (Dulbecco’s modified Eagle’s medium)
+10vol%ࢗࢨ⫶ඡ⾉ΰ㸝fetal bovine serum㸯FBS㸞ࢅ
⏕࠷ࡒ㸣ᮇ◂✪࡚⏕࠷ࡒิ௥♼⤊⣵⬂࠽ࡻࡦᇰ㣬ᾦ
ᶭ⬗ࢅⓆᥱࡌࡾࡆ࡛ࢅ☔࠾ࡴࡾࡒࡴ㸡ᠩ⃦ᾦࡡୌ㒂
ࡢ㸡
㸝ᰬ㸞ࣈࣚ࢕࣏࣭ࣛࢬࣜࡻࡽᥞ౩ࡈࡿࡒ㸣ࡆࡡᇰ
ࢅ෼⤎ࡈࡎࡍ࡞ᇰ㣬ࡊࡒࡵࡡ࡞ࡗ࠷࡙㸡⣵⬂᥃╌ࡡ
㣬ᾦ࡞෼⤎ಕ㆜๠㸝5vol㸚DMSO㸞ࢅຊ࠻ࡒ෼⤎⏕
ᵕᏄࡷ⮤ⓆⓆℾࡡ☔ヾࢅᑊ↯ᐁ㥺࡛ࡊ࡙⾔࡝ࡖࡒ㸣
ᇰ㣬ᾦ࡞㸡⣵⬂ᐠᗐ࠿ 1×106 cells/ml ࡛࡝ࡾࡻ࠹࡞ฦ
ᩋㄢᩒࡊᠩ⃦ࡈࡎࡒ㸣ࡆࡡᠩ⃦ᾦ 1 ml ࢅࢠࣚ࢕࢛ࢲ
⤎ᯕ࠽ࡻࡦ⩻ᐳ
࣭ࣖࣇ࡞ථࡿ㸡୕オࡡࡻ࠹࡝ᵕࠍ࡝෼⤎᪁Ἢ࡚෼⤎
ࡊࡒ㸣ࡐࡊ࡙㸢80Υ㸡ཧࡢ㸢197Υ࡚ 1 㐄㛣ಕᏋࡊࡒ
ᚃ㸡37Υ࡚
ᮅ෼⤎ࡡิ௥♼⤊⣵⬂ࡡᇰ㣬ᐁ㥺࡚ふᐳࡌࡾ࡛㸡
↞ࡊ࡙᛬㏷よ෼ࡊࡒ㸣よ෼ᚃ෼⤎ಕ㆜
ᇰ㣬㛜ጙ᫤࡞ࡢධ࡙⌣≟࡚ᾃ㐗ࡊ࡙࠷ࡒ⣵⬂࠿㸡ᩐ
๠࠿⣵⬂࡞ᙫ㡢ࢅཀྵ࡯ࡈ࡟ࡻ࠹㸡㏷ࡷ࠾࡞㏳ᖏࡡᇰ
᫤㛣㹳ᩐ᪝࡚ᇱᯀ୕࡞᥃╌ࡊ㸡✲㉫ࢅఘࡣࡊ࡙ᠺ㛏
㣬ᾦ࡞⨠ᥦࡊࡒ㸣࡝࠽㸡DMSO ࢅຊ࠻ࡍ࡞෼⤎ࡈࡎ
ࡊ࡙࠷ࡾᵕᏄ࠿ふᐳࡈࡿࡒ㸣ࡱࡒ⣵⬂አ㞹నῼᏽࢅ
ࡒᑊ↯ᐁ㥺ࡵ⾔ࡖࡒ㸝෫༴᪁Ἢࡢղ㸞㸣
⾔ࡖࡒ⤎ᯕ㸡ᇰ㣬㛜ጙᚃ 2 㐄㛣⛤ᗐ࡚ⓆℾὩິࢅ㛜
よ෼ᚃࡡ♼⤊⣵⬂ࡢ㸡⣵⬂ᇰ㣬⏕ࢗ࢘ࣜ୕࡚Ὼᗐ
ጙࡊࡒ㸣ᮅ෼⤎⣵⬂ࡡὩິ㞹నࡢ㸡ᣲᖕ 34.2s3.7 µV㸡
37Υ㸡‭ᗐ100㸚㸡CO2ࢅ5㸚ྱ᭯ࡊࡒ1Ẵᅸࡡ✭Ẵࡡ
ᖕ 2.3s0.5 ms ⛤ᗐ࡛ῼᏽࡈࡿࡒ㸣ㄏᕣࡢὩິ㞹న࠿
⎌ሾୖ࡚ῺᗐࡷS-ࢅୌᏽ࡞ಕࡖ࡙ᇰ㣬ࡊࡒ㸣ࡐࡊ࡙
ῼᏽࡈࡿࡒ⣑ 20 ಴ࡡ㞹ᴗ࡚ࡡᖲᆍೋ࠾ࡼࡡ᭩ኬ೩
ࡐࡡ⸵⏍≟Ἓࡢ㸡ᇰ㣬㛜ጙᚃࡡᙟឺን໩ࢅన┞ᕣ㢟
ᕣࢅ⾪ࡌ㸣ࡆࡡ㞹నࡢ⣵⬂አオ㘋Ἢࢅ⏕࠷࡙ῼᏽࡈ
᚜㙶࡚ふᐳࡊ࡙⾔࡝ࡖࡒ㸣᥃╌࣬ఘᘿࡊࡒ⣵⬂ࡢよ
ࡿࡾᣲᖕ
෼ᚃ⸵⏍ࡊࡒ⣵⬂࡚࠵ࡾ࡛⩻࠻㸡ᮅ෼⤎࡚᥃╌ࡊࡒ
ms ࡡ࢛࣭ࢱ࣭࡚࠵ࡾࡆ࡛࠾ࡼ♼⤊⣵⬂ࡡὩິ㞹న
⣵⬂㟻✒࡞ᑊࡌࡾ෼⤎ᚃ⸵⏍࣬᥃╌ࡊࡒ⣵⬂㟻✒࡞
࡚࠵ࡾ࡛ึ᩷ࡊࡒ㸣ࡐࡆ࡚㸡ࡆࡡೋࢅᮇ◂✪࡚⏕࠷
ࡻࡖ࡙㸡⸵⏍ࡡ⛤ᗐࢅᏽᛮⓏ࡞フ౮ࡊࡒ㸣
ࡒ♼⤊⣵⬂ࡡὩິ㞹నࡡᇱ‵ೋ࡛ࡊࡒ㸣
ࡱࡒ⸵⏍ࡊࡒ♼⤊⣵⬂ࡡᶭ⬗ࡡḿᖏᛮࢅフ౮ࡌࡾ
12, 13)
࡛ྜྷ⛤ᗐ࡚㸡Ὡິ㞹నࡡಘྒᖕࡵᩐ
䐖
䐗
ࡒࡴ㸡ᇰ㣬ᇱᯀ୕࡞Ⅴࡡ᚜ᑚ㞹ᴗࢅ᭯ࡌࡾࢨ࣭ࣔ
ࣝ㸝ኣ㞹ᴗᇰ㣬ᇱᯀ㸞୕࡞⣵⬂ࢅᇰ㣬ࡊ㸡ࡐࡡ⮤Ⓠ
Ⓠℾࢅゝῼࡊࡒ㸣ࡆࡡ᪁Ἢࡢ㸡♼⤊⣵⬂ࡡ⣵⬂አὩ
ິ㞹నࢅゝῼࡌࡾᡥἪࡡࡥ࡛ࡗ࡚࠵ࡾ㸣⣵⬂አオ
㘋Ἢ࡚ࡢ㸡⣵⬂አ࡚ࡡ࢕࢛ࣤࡡ㔖Ⓩን໩࠿ᘤࡀ㉫ࡆ
100µm
䐘
䐙
ࡌ㞹నᕣࢅオ㘋ࡌࡾࡡ࡚㸡ᚋࡼࡿࡾ㞹నᣲᖕࡢ⣵⬂
හオ㘋Ἢࡡᩐ༎P;ࡻࡽᑚࡈ࡝ೋ㸡㏳ᖏᩐ༎µ;ࡡ࢛
࣭ࢱ࣭࡛࡝ࡾ㸡㸣ࡐࡡࡒࡴ㸡ゝῼ⣌ࡡࢿ࢕ࢫࣝ࣊
ࣜࡵ㹳µ;⛤ᗐ࡞ᢒ࠻ࡒ㸣ᮇ◂✪࡚⏕࠷ࡒ⣵⬂
ࡡὩິ㞹నࢅῼᏽࡌࡾࢨ࣭ࣔࣝ࡞ࡢ㸡࢝ࣚࢪᇱᯀ୕
ࡡ୯ኳ㒂࡞ୌ㎰µPࡡᄿみ࠷Ⓣ㔘㯦㞹ᴗ࠿಴ᇔ
ࡴ㎲ࡱࡿ㸡ࡱࡒࢨ࣭ࣔࣝࡡ୯ᚨ࠾ࡼ༎ฦ㞫ࡿࡒ࿔㎰
㒂࡞ࡢ಴ࡡᇱ‵㞹ᴗ࠿ス⨠ࡈࡿ࡙࠷ࡾ㸣ࡆࡡࢨࣔ
࣭ࣝ୯ኳ㒂࡞⣵⬂ࢅᇰ㣬ࡌࡾࡆ࡛࡚㸡ᶭ᲌Ⓩ࡝᥾ഭ
ࢅ୙࠻ࡾࡆ࡛࡝ࡂὩິ㞹నࡡῼᏽ࠿࡚ࡀࡾ㸣⣵⬂ࡡ
᥃╌ࢅಀ㐅ࡌࡾࡒࡴ㸡ࢨ࣭ࣔࣝ୕࡞ࢤ࣭ࣚࢣࣤࡱࡒ
Fig. 1. phase-contrast images of neurons at 9 days after
culture. These images represent typical
morphology of cells cryopreserved in the
following 4 cooling rates; ձ㸢3Υ/min, ղ㸢
10 Υ /min, ճ 㸢 30 Υ /min, մ 㸢 150 Υ /min.
Cells unable to adhere to substrate form cell
aggregations (arrows in ճ and մ).
ࡢSRO^1O^VLQH࡝࡜ࢅ⷟ࡂࢤ࣭ࢷ࢔ࣤࢡࡊࡒ㸣♼
ձ㹳մࡡ྘᪁Ἢ࡚෼⤎ಕᏋࡊࡒモᩩࡡ㸡よ෼ᚃ 9
⤊⣵⬂ࡡὩິ㞹నࡡῼᏽ࡞ࡢ㸡2*)8^VWHP㸝࢓ࣜ
᪝┘ࡡᇰ㣬≟Ἓࢅ Fig. 1 ࡞♟ࡌ㸣෼⤎よ෼ᚃࡡ⣵⬂
ࣆ࢒࣒ࢴࢺࢦ࢕࢙ࣤࢪ♣⿿㸞ࢅ⏕࠷ࡒ㸣ࡱࡒ♼⤊⣵
࡚ࡢ㸡ᮅ෼⤎ࡡࡵࡡ࡛Ẓ࡬࡙ᇱᯀ࡞㈖ࡽ௛ࡄ࡝࠷⣵
⬂ࡡὩິ㞹నࡡಘྒᖕࡢᩐPVࡡ࢛࣭ࢱ࣭࡚࠵ࡾࡡ࡚㸡
⬂㸝Fig.㸦࡞࠽࠷࡙࿔㎰㒂࠿Ⓣࡂකࡖ࡙࠷ࡾ୷࠷⣵
ࡆࡡ⿞⨠࡚ࡢN-_࡚ῼᏽࢅ⾔ࡖࡒ㸣
⬂㸞ࡡ๪ྙ࠿ኣ࠷ࡆ࡛࠿ふῼࡈࡿࡒ㸣෼⤎ಕᏋ࠿ྊ
⏕࠷ࡒิ௥♼⤊⣵⬂࠿ᮇ◂✪ࡡᇰ㣬᮪௲࡚ḿᖏ࡞
⬗࡚࠵ࡾ⣵⬂࡚ࡵ㸡෼⤎࣬よ෼ࣈࣞࢬࢪࡡ୯࡚ᩐ
10㸚⛤ᗐ⸵⏍࡚ࡀ࡝࠷ࡆ࡛࠿ሒ࿈ࡈࡿ࡙࠷ࡾ 14)ࡒࡴ㸡
ḗ࡞㸡⸵⏍ࡊࡒ♼⤊⣵⬂ࡡᶭ⬗ࡡḿᖏᛮࢅ☔ヾࡌ
ᮇ◂✪࡚⏕࠷ࡒࣈࣞࢬࢪ࡞࠽࠷࡙ࡵ㸡♼⤊⣵⬂࡞ర
ࡾࡒࡴ㸡Ὡິ㞹నࡡῼᏽࢅ⾔ࡖࡒ㸣ୌౚ࡛ࡊ࡙ Fig. 2
ࡼ࠾ࡡ᥾ഭࢅཀྵ࡯ࡊࡒࡵࡡ࡛⩻࠻ࡼࡿࡾ㸣ࡌ࡝ࢂࡔ㸡
࡞ࡢኣ㞹ᴗᇰ㣬ᇱᯀ୕࡞ᇰ㣬ࡊࡒ㸡෼⤎よ෼ࡈࡿࡒ
ࡆࡡ⸵⏍⋙ࡡ఩ୖࢅᑛࡊ࡚ࡵᑚࡈࡂࡌࡾࡆ࡛࠿㸡ᮇ
♼⤊⣵⬂ࡡన┞ᕣ㢟᚜㙶ാࢅ♟ࡌ㸝෼⤎᪁Ἢձ࡞ࡻ
◂✪ࡡ┘Ⓩ࡚࠵ࡾ㸣ࡆࡿࡼ᥃╌࡚ࡀ࡝࠾ࡖࡒ⣵⬂ࡢ㸡
ࡾ෼⤎ಕᏋ⣵⬂ࡡ㸡よ෼ᚃᇰ㣬 16 ᪝┘ࡡᵕᏄ㸞㸣ࡆ
ᇰ㣬 1 㐄㛣⛤ᗐ࡚ም≟࡞࡝ࡽ୘㏩᪺࡞࡝ࡾ㸝Fig. 1
ࡡᅒ୯㸡ළ࡚♟ࡊࡒ㞹ᴗ࡚ῼᏽࡈࡿࡒὩິ㞹నࢅ㸡
ճ㸡մ୯▦༰࡚♟ࡈࡿࡒ≟ឺ㸞
㸣ᇱᯀ࡞᥃╌ࡊ࡙࠷ࡾ
Fig. 3 ࡞♟ࡌ㸣ࡆࡡ࡛ࡀῼᏽࡈࡿࡒὩິ㞹నࡢ㸡ᖲ
⣵⬂ࡵ㸡ḿᖏ࡞⸵⏍ࡊ࡙࠷ࡿࡣఘ㛏ࡌࡾ࠿㸡ࡐ࠹࡚
ᆍࡌࡾ࡛ᣲᖕ 23.5s2.1 µV㸡ᖕ 2.3s0.5 ms ࡚࠵ࡽ㸡
࡝࠷∸ࡢ⌣≟ࡡࡱࡱ࡚࠵ࡾ㸣௧୕ࡡࡻ࠹࡝㸡෼⤎よ
ᮅ෼⤎⣵⬂ࡡὩິ㞹న࡛Ẓ㍉ࡊ࡙ᣲᖕ࠿ⱕᖱᑚࡈࡂ
෼ᚃᇰ㣬ࡊࡒ♼⤊⣵⬂ࡡᙟឺふῼ࠾ࡼ㸡྘෼⤎ಕᏋ
࡝ࡖ࡙࠷ࡒ࠿㸡ୌฦ㛣ࡡᖲᆍⓆℾᅂᩐ࠿⣑ 600 ᅂ
᪁Ἢ࡞ࡻࡾ⣵⬂ࡡ⸵⏍ࡡ⛤ᗐࢅᏽᛮⓏ࡞ぜ✒ࡵࡖࡒ㸣
/min ࡛༎ฦὩⓆ࡞Ὡິࡊ࡙࠷ࡾࡆ࡛࠿♟ࡈࡿࡒ㸣࡝
ࡐࡡ⤎ᯕ㸡᭩ࡵ⸵⏍ࡡ⛤ᗐ࠿㧏࠾ࡖࡒ෼⤎᪁Ἢࡢձ
࠽ࡆࡿࡼࡡೋࡡ㐢࠷࠿෼⤎ಕᏋ࡞ࡻࡾᙫ㡢࠾࡜࠹࠾
࡚㸡఩࠾ࡖࡒࡡࡢմ࡚࠵ࡖࡒ㸣ࡌ࡝ࢂࡔ♼⤊⣵⬂ࡢ㸡
࡞ࡗ࠷࡙ࡢ㸡ᇰ㣬᪝ᩐࡷ⣵⬂ᐠᗐ࡝࡜࠿༎ฦโᚒ࡚
෼⤎㏷ᗐ࠿㐔࠷࡮࡜㧏࠷๪ྙ࡚⸵⏍ࡊࡒࡆ࡛࠿ࢂ࠾
ࡀ࡙࠽ࡼࡍ㸡࡝࠽࠾ࡗ⣵⬂አ㞹న࡞ࡻࡾῼᏽࡡࡒࡴ
ࡖࡒ㸣ࡱࡒᇰ㣬᫤ࡡ♼⤊⣵⬂ࡡᙟឺን໩ࡢ㸡⸵⏍⋙
ᏽ㔖Ⓩ࡝Ẓ㍉ࡢ࡚ࡀ࡙࠷࡝࠷㸣
ࡡ㧏࠷᮪௲࡚෼⤎ࡊࡒሔྙࡢᑊ↯ᐁ㥺࡚࠵ࡾᮅ෼⤎
⣵⬂ࡡᙟឺን໩࡞㟸ᖏ࡞ࡻࡂజ࡙࠷ࡒ㸣ࡆࡡࡆ࡛࠾
50µm
ࡼࡵ㸡⸵⏍⋙ࡡ㧏࠷᮪௲࡞ࡻࡾ෼⤎ಕᏋ⣵⬂ࡡḿᖏ
ᛮࡡ㧏ࡈ࠿ᨥᣚࡈࡿࡾ㸣
࡝࠽ղࡡ᪁Ἢ࡚෼⤎ಕᏋࡊࡒ⣵⬂࡞ࡗ࠷࡙㸡ᇰ㣬
㸫 ᪝ ┘ ࡞ ♼ ⤊ ⣵ ⬂ ≁ ␏ ࢰ ࣤ ࣂ ࢠ ㈻ 㸝 microtuble
associated protein 2: MAP2㸞ࡡ⺧ක᯹Ⰵࢅ⾔࡝ࡖࡒ 9)㸣
ࡐࡡ⤎ᯕ㸡⣵㛏࠷✲㉫ࢅఘࡣࡊࡒ⣵⬂ࡡኣࡂ࠿♼⤊
⣵⬂࡚࠵ࡾࡆ࡛࠿☔ヾࡈࡿࡒ㸣ࡐࡡ௙ࡡ⣵⬂ࡢ㸡ࢡ
ࣛ࢓⣵⬂࡝࡜ቌṢ⬗ࡡ㧏࠷⣵⬂࡚࠵ࡾ࡛⩻࠻ࡼࡿࡾ㸣
ࡱࡒಕᏋῺᗐ࡞ࡗ࠷࡙ࡢ㸡㸢80Υ࡞࠽࠷࡙ࡵ࠵ࡾ
⛤ᗐࡡᾦమ≟ឺࡡỀ࠿Ꮛᅹࡊ㸡㛏᭿ಕᏋࡌࡾ㛣࡞⏍
໩Ꮥཬᚺ࠿ࡹࡖࡂࡽ㐅⾔ࡊࡒࡽ㸡㐛๨࡞⬲Ềࡈࡿࡒ
ࡽࡊ࡙㸡⸵⏍⋙࠿఩ୖࡌࡾ࡛࠷ࢂࡿ࡙࠷ࡾ
8, 15)
㸣ᮇ
◂✪࡚ࡢ౼᏿୕෫༴᪁Ἢ࡞ࡻࡽಕᏋῺᗐ࠿␏࡝ࡖ࡙
࠷ࡾ࠿㸡ಕᏋ᭿㛣࠿ 1 㐄㛣⛤ᗐ࡛Ẓ㍉Ⓩ▯࠷ࡒࡴ㸡
ࡆࡡࡻ࠹࡝ಕᏋ᭿㛣୯࡞㉫ࡆࡾཬᚺࡡᙫ㡢࠿ヾࡴࡼ
ࡿ࡝࠷⛤ᗐᑚࡈ࠷࡛⩻࠻ࡼࡿࡾ㸣ࡊ࠾ࡊ㸡ࡐࡡ㐢࠷
࡞ࡻࡾ⸵⏍⋙࡫ࡡᙫ㡢࡞ࡗ࠷࡙ࡢ௑ᚃࡡㄚ㢗࡚࠵ࡾ㸣
ࡔ࡝ࡲ࡞෼⤎ಕ㆜๠ࢅຊ࠻ࡍ࡞෼⤎ࡊࡒモᩩ࡞ࡗ
࠷࡙ࡢ㸡࡮࡛ࢆ࡜᥃╌ࡌࡾ⣵⬂ࡢࡲࡼࡿ࡝࠾ࡖࡒ㸣
ࡆࡿࡢ㸡෼⤎よ෼ࡡ㐛⛤࡚᥾ഭࡊࡒ࠾㸡ᡀ࠷ࡢ⸵⏍
Fig. 2. phase-contrast images of neuronal cells
cultured on the multi-array electrode. The
cells were cryopreserved in the condition of
ձ , and then were thawed. Dark 50 µm
squares correspond to electrodes. Neurons
show spherical cell shape with diameter of
approximately 10 µm. Action potential
measured by the electrode (marked by circle)
is shown in Fig. 3.
ࡊࡒ࠿ᇱᯀ࡞ᑊࡌࡾ᥃╌⬗ງ࠿ᘽࡂ࡝ࡖࡒࡵࡡࡓ࡛
෼⤎よ෼ࡈࡿࡒ♼⤊⣵⬂ࡡ෼⤎᪁Ἢࡡ㐢࠷࡞ࡻࡾ
ᛦࢂࡿࡾ㸣ᇰ㣬ᾦ୯࡞ࡢ 10vol㸚FBS ࠿ྱࡱࡿ࡙࠷
⮤ⓆⓆℾࡡᵕᏄࡵふᐳᐁ㥺ࡡ⤎ᯕ࡛ᩒྙࡊ࡙࠽ࡽ㸡
ࡾ࠿㸡ᮇ◂✪ࡡᐁ㥺᮪௲ࡡ⠂ᅑහ࡚ࡢ 10vol㸚⃨ᗐࡡ
ձ㸡ղ࡚ࡢᇰ㣬 2 㐄㛣┘௧㜾࡞⮤ⓆⓆℾ࠿☔ヾࡈࡿ
FBS ࡢ෼⤎ಕ㆜ష⏕ࢅⓆᥱࡊ࡝࠾ࡖࡒ㸡࡛⤎ㄵ࡚ࡀ
ࡒ㸣ࡆࡿࡼࡡ♼⤊⣵⬂࡚ᚋࡼࡿࡒὩິ㞹నࡡᙁᗐࡵ
ࡾ㸣⾉ΰࡡ෼⤎ಕ㆜ష⏕ࡢ㸡ࡻࡽ㧏⃨ᗐࡡ῟ຊ࠿ᚪ
㢎ᗐࡵ㸡ᑊ↯ᐁ㥺࡚࠵ࡾᮅ෼⤎⣵⬂ࡡࡵࡡ࡞༆ᩓࡊ
さ࡝ࡡ࠾ࡵࡊࡿ࡝࠷
15)
㸣
࡙࠽ࡽ㸡⣵⬂ࡡḿᖏᛮ࠿♟ြࡈࡿࡾ㸣ճ࡞ࡗ࠷࡙ࡢ㸡
⮤ⓆⓆℾ࡛ᛦࢂࡿࡾಘྒ࠿࡮࡯ྜྷ᫤᭿࡞᳠ฝ࡚ࡀࡒ
࡯ࡌຝᯕ࡛ࡊ࡙ࡢ㸡ฆᅖⅤ㜾ୖ࡞ࡻࡽể⤎ᬏ⏍ᠺࡡ
࠿㸡ᙁᗐࡵ㢎ᗐࡵ༎ฦ࡚ࡢ࡝࠾ࡖࡒ㸣ࡆࡿࡢࠉḿᖏ
㔖ࡷ㏷ᗐࢅᢒโࡊ㸡⣵⬂හ࠾ࡼࡡ㐛๨࡝⬲Ềࡷ⣵⬂
࡞ᶭ⬗ࢅⓆᥱ࡚ࡀࡾࡻ࠹࡝♼⤊⣵⬂ࡡ⸵⏍⋙࠿఩࠾
አể⤎ᬏ࡞ࡻࡾᶭ᲌Ⓩ᥾ഭ࡝࡜ࢅ㍇΅ࡌࡾ࡛ࡈࡿ࡙
ࡖࡒࡆ࡛ࢅ♟ြࡌࡾࠊմ࡞ࡗ࠷࡙ࡢ㸡㞹ᴗᇱᯀ࡞ᘿ
࠷ࡾ 4)㸣ࡆࡿ࡞ຊ࠻࡙ DMSO ࡞ࡻࡾ⣵⬂෼⤎᫤ࡡಕ
ࡽ௛ࡂࡆ࡛ࡡ࡚ࡀࡒ⣵⬂⮤మ࠿ᑛ࡝ࡂ㸡⮤ⓆⓆℾࡢ
㆜࣒࢜ࢼࢫ࣑ࡢ㸡⣵⬂හࡡỀ࡛ DMSO ࠿⨠ࡀᥦࢂ
᳠ฝࡈࡿ࡝࠾ࡖࡒ㸣
ࡾࡆ࡛࡞ࡻࡖ࡙෼⤎ࡡ㝷࡞࠽ࡆࡾ⣵⬂හࡡ⁈ᾦ⃨⦨
ࢅ㍇΅ࡌࡾ㸡࠵ࡾ࠷ࡢ DMSO ࠿⣵⬂⭯ࡡ␧Ềᛮࡡ
10µV
5 sec
㒂ฦ࡞⏻ࡱࡖ࡙⭯ࢅᏭᏽ໩ࡈࡎࡾࡒࡴ࡛⩻࠻ࡼࡿ࡙
࠷ࡾ 4, 16)㸣ᮇ◂✪࡚෼⤎㏷ᗐ౪Ꮛᛮࢅ᳠ゞࡊࡒ⤎ᯕ㸡
A
෼⤎㏷ᗐ࠿㐔࠷࡮࡜⸵⏍⋙࠿㧏࠾ࡖࡒ㸣ᚉࡖ࡙㸡᛬
㏷෼⤎ࡊࡒモᩩ࡞࠽࠷࡙ࡢ㐛෫༴ࡡቌኬ࡞ࡻࡽể⤎
5 ms
10µV
ᬏࡡᠺ㛏㏷ᗐ࠿ኬࡀࡂ㸡ࡱࡒ DMSO ࡡ⣵⬂හ࡫ࡡᾈ
㏩᫤㛣࠿▯࠷࡝࡜ࡡ⌦⏜࡚㸡DMSO ࡞ࡻࡾಕ㆜࣒࢜
ࢼࢫ࣑࠿༎ฦⓆᥱ࡚ࡀ࡝࠾ࡖࡒ࡛⩻࠻ࡼࡿࡾ㸣⥾ះ
෼⤎Ἢ࡞ࡻࡽ⣵⬂ࢅ෼⤎ࡈࡎࡒሔྙ㸡ể⤎ᬏࡡᠺ㛏
B
㏷ᗐ࠿࠵ࡾ⛤ᗐᢒโࡈࡿࡾࡒࡴ㸡෼⤎࡞ఔࡖ࡙⏍ࡋ
ࡾ⣵⬂හአࡡ⁈ᾦ⃨ᗐࡡን໩㏷ᗐࡵᢒ࠻ࡼࡿ㸡ࡱࡒ
DMSO ࡞ࡻࡾ⭯ࡡಕ㆜ష⏕࠿ᶭ⬗ࡊࡒ࡛⩻࠻ࡼࡿࡾ㸣
௑ᚃ㸡ể⤎ᬏࡡᠺ㛏࡞ఔ࠹⁈ᾦࡡ⃨ᗐን໩ࡷງᏕⓏ
Fig. 3. Spontaneous action potential of cryopreserved
neuronal cells (freezing condition ձ) on the
multi-array electrode at 16 days after culture.
The action potential was measured by the
electrode (marked by circle in Fig. 2).
A: action potentials were generated at constant
rate during 40 seconds.
B: Higher magnification of one of these signals.
௧୕ࡡ⤎ᯕࢅࡱ࡛ࡴࡾ࡛㸡Table 2 ࡡࡻ࠹࡞࡝ࡾ㸣
ᙫ㡢࡞ࡗ࠷࡙ふῼࡊ㸡࣒࢜ࢼࢫ࣑ࢅ᪺ࡼ࠾࡞ࡊ࡙࠷
ࡂᚪさ࠿࠵ࡾ㸣
ࡱ ࡛ ࡴ
ฦᩋࡊࡒิ௥ࣚࢴࢹኬ⬳⓮㈻⏜ᮮ♼⤊⣵⬂ࢅ෼⤎
ಕᏋࡊ㸡ࡐࡡᶭ⬗ࡡḿᖏᛮࢅన┞ᕣ㢟᚜㙶ふᐳ࠽ࡻ
ࡦ㞹ẴⓏὩິࢅ☔ヾࡌࡾࡆ࡛࡚⾔ࡖࡒ㸣ᇰ㣬⏕ᇰᆀ
ձࡡ෼⤎᪁Ἢ࡞ࡻࡽಕᏋࡈࡿࡒิ௥♼⤊⣵⬂ࡢ㸡よ
࡞෼⤎ಕ㆜๠࡛ࡊ࡙ 5㸚 dimethylsulfoxide ࢅຊ࠻㸡
෼ᚃࡡⓆ㐡≟Ἓ࠿ᮅ෼⤎ࡡ⣵⬂࡛㢦జࡊ࡙࠽ࡽ㸡⮤
㸢3Υ/min㹳㸢150Υ/min ࡡ⠂ᅑ࡚෫༴㏷ᗐࢅን໩ࡈ
ⓆⓆℾࡵ☔ヾࡈࡿࡒࡆ࡛࠾ࡼ㸡ᶭ⬗ࢅ⥌ᣚࡊࡒࡱࡱ
ࡎࡒ㸣 1 㐄㛣ಕᏋᚃ᛬㏷よ෼ࡊ࡙ᇰ㣬ࡊࡒ⤎ᯕ㸡ᮇ
♼⤊⣵⬂࠿Ẓ㍉Ⓩ㧏࠷☔❟࡚෼⤎ಕᏋ࡚ࡀࡾࡆ࡛࠿
◂✪ࡡ᮪௲හ࡚ࡢ෫༴㏷ᗐ࠿㐔࠷࡮࡜⸵⏍⋙࠿㧏࠷
ࢂ࠾ࡖࡒ㸣ࡱࡒ㸡5㸚DMSO ࢅ෼⤎ಕ㆜๠࡛ࡊ࡙⏕
ࡆ࡛࠿ࢂ࠾ࡖࡒ㸣ࡱࡒᮅ෼⤎⣵⬂࡛ྜྷ➴ࡡ⮤ⓆⓆℾ
࠷ࡒ᫤㸡෼⤎㏷ᗐ࠿㐔࠷࡮࡜⸵⏍⋙࠿㧏࠾ࡖࡒ㸣
࠿☔ヾࡈࡿ㸡ᶭ⬗Ⓩ࡞ࡵಕᏋࡈࡿ࡙࠷ࡾࡆ࡛࠿☔ヾ
ࡈࡿࡒ㸣
Table 2. Summary of cryopreserved primary rat cortical
neuronal cells in different cooling rates.
ㅨ ㎙
ձ㸢ΥPLQ
ղ㸢ΥPLQ
ճ㸢ΥPLQ
մ㸢ΥPLQ
Microscopic
observations
Same as control
Same as control
Fewer number
Not recovered
Spontaneous
action potential
Same as control
Fewer number
Sometimes
Not measured
ୌ⯙࡞෼⤎ಕ㆜๠ࡡ⥾ះ෼⤎㸝⣵⬂አ෼⤎㸞࡞ཀྵ
ᮇ◂✪ࡡୌ㒂ࡢ㸡໪ᾇ㐠ኬᏕ඙❻⛁Ꮥᢇ⾙භྜྷ◂✪
ࢬࣤࢰ࣭ࡡ㸝ᰬ㸞ࣈࣚ࢕࣏࣭ࣛࢬࣜ♣࡛ࡡභྜྷ◂✪
ࣈࣞࢩ࢘ࢠࢹ㸡࠽ࡻࡦ⛁Ꮥ◂✪㈕⿭ຐ㔘஥ᴏ㸝ㄚ㢗
␊ྒ 17340125㸞࡞ࡻࡽ⾔ࢂࡿࡒ㸣
ᩝ ⊡
multimicroelectrode surface. IEEE Trans. Biomed.
1) Წ⃕ୌ㑳㸯ࢂࡿࢂࡿࡢ⏍మ⤄⧂ࡡ෼⤎ಕᏋ࡞ࡗ
࠷࡙రࢅ▩ࡼ࡝࠷࠾㸣఩Ὼ⏍∸ᕝᏕఌヽ㸡44㸡
Eng., 26, 273-279 (1979)
11) Marco-Jiménez, F., Garzón, D. L., Peñaranda, D. S.,
10-12 (1998)
Pérez, L., Viudes-de-Castro, M. P., Vicente, J. S.,
2) Marris, E.: Grey matters. Nature, 444, 808-810
Jover, M. and Asturiano, J. F.: Cryopreservation of
(2006)
European eel spermatozoa: Effect of dilution ratio,
3) Ⓣᶌ஡㸯㹷࡝ࡱࡵࡡ㹸ࢅ㛏ࡂࡵࡒࡎࡾ̿෫෼࣬෫
fetal
bovine
serum
supplementation,
and
ⶮ࣬よ෼ᢇ⾙㸣㹷ࣁ࢕࢛࡞Ꮥࡦࣁ࢕࢛ࢅ㉲࠻ࡾ
cryoprotectants. Cryobiology, 53, 51-57 (2006)
ᕝᏕ࠾ࡼࣁ࢕࢛࡫ࡡ࢓ࣈ࣭ࣞࢲ㹸㸡ῳ㎰ḿ ⥽㸡
12) Jinbo, Y., Robinson, H. P. C. and Kawana, A.:
Simultaneous measurement of intracellular calcium
᪝ᮇフㄵ♣㸡᮶ா㸡p.123-141㸝2004㸞
4) 㒿஬᫓㸯ࠔ෼⤎ಕᏋ̿ິ∸᳔࣬∸࣬᚜⏍∸̿ࠕ㸡
and
᭽ಲ᭡ᗉ㸡᮶ா (1987)
from
patterned
neural
804-810 (1993).
13) Otto, F. Görtz, P. Fleischer, W. and Siebler, M.:
6) ᮟ୕㍜ኰ㸯ࠔ⏍మᕝᏕᴣㄵࠕ㸡ࢤࣞࢻ♣㸡᮶ா
Cryopreserved rat cortical cells develop functional
neuronal networks on microelectrode arrays. J.
㸝2006㸞
7) ୕ᖲᜇ㸡㏺ᆊ᫓㸯ࠔ⏍మ⣌ࡡỀࠕ㸡ㅦㄧ♣ࢦ࢕࢙
ࣤࢷ࢔ࣆ࢔ࢠ㸡᮶ா㸝1989㸞
activity
networks in culture. IEEE Trans. Biomed. Eng., 40,
5) ὰ㔕Ⱪ㝧㸡ᑚ⃕࿰ᝬ㸡⸠ḿᕑ㸯
ࠔ⛛᳔࡛ெᕝ⮒ჹࠕ
ᒷἴ᭡ᗉ㸡᮶ா㸝2001㸞
electrical
Neurosci Methods., 128, 173-181 (2003)
14) Li, Y. Lu, R. H., Luo, G. F., Pang, W. J. and Yang,
8) ᱋㔕࿰ྊ㸯ᾇ⸬⣵⬂ࡡ෼⤎ಕᏋ㸣➠ 53 ᅂ఩Ὼ⏍
G. S.: Effects of different cryoprotectants on the
∸ ᕝ Ꮥ ఌ ࢬ ࣐ ࢻ ࣭ ཀྵ ࡦ ᖳ ఌ ㅦ ⁿ さ ᪠ 㞗 㸡 p.2
viability and biological characteristics of porcine
(2007)
preadipocyte. Cryobiology, 53, 240-247 (2006)
9) Motomura, J., Uchida, T., Nagayama, M., Gohara,
15) セ༞ᾀ㸡᪝ᮇ⤄⧂ᇰ㣬Ꮥఌ㸡JCRB ⣵⬂ࣁࣤࢠ㸯
K., Taira, T., Shimizu, K. and Sakai, M.: Effects of
ࠔ⣵⬂ᇰ㣬࡝ࡾ࡮࡜ Q&Aࠕ㸡⨲ᅰ♣㸡᮶ா㸡
additives and cooling rates on cryopreservation
p.166-169 (2003)
process of rat cortical cells. In "Physics and
16) Sum, A. K. and Juan, J.: Molecular simulation study
Chemistry of Ice”, W. F. Kuhs ed., Royal Society of
on the influence of dimethylsulfoxide on the
Chemistry, London, p.409-416 (2007)
structure of phospholipids bilayers. Biophys. J., 85,
10) Gross, G. W.: Simultaneous single unit recording in
3636-3645 (2003)
vitro with a photoetched laser deinsulated gold
Fly UP